Empirical Risk Minimization with Relative Entropy Regularization
- URL: http://arxiv.org/abs/2211.06617v5
- Date: Mon, 8 Apr 2024 07:44:38 GMT
- Title: Empirical Risk Minimization with Relative Entropy Regularization
- Authors: Samir M. Perlaza, Gaetan Bisson, IƱaki Esnaola, Alain Jean-Marie, Stefano Rini,
- Abstract summary: The empirical risk minimization (ERM) problem with relative entropy regularization (ERM-RER) is investigated.
The solution to this problem, if it exists, is shown to be a unique probability measure, mutually absolutely continuous with the reference measure.
For a fixed dataset and under a specific condition, the empirical risk is shown to be a sub-Gaussian random variable.
- Score: 6.815730801645783
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The empirical risk minimization (ERM) problem with relative entropy regularization (ERM-RER) is investigated under the assumption that the reference measure is a $\sigma$-finite measure, and not necessarily a probability measure. Under this assumption, which leads to a generalization of the ERM-RER problem allowing a larger degree of flexibility for incorporating prior knowledge, numerous relevant properties are stated. Among these properties, the solution to this problem, if it exists, is shown to be a unique probability measure, mutually absolutely continuous with the reference measure. Such a solution exhibits a probably-approximately-correct guarantee for the ERM problem independently of whether the latter possesses a solution. For a fixed dataset and under a specific condition, the empirical risk is shown to be a sub-Gaussian random variable when the models are sampled from the solution to the ERM-RER problem. The generalization capabilities of the solution to the ERM-RER problem (the Gibbs algorithm) are studied via the sensitivity of the expected empirical risk to deviations from such a solution towards alternative probability measures. Finally, an interesting connection between sensitivity, generalization error, and lautum information is established.
Related papers
- Enlarging Feature Support Overlap for Domain Generalization [9.227839292188346]
Invariant risk minimization (IRM) addresses this issue by learning invariant features and minimizing the risk across different domains.
We propose a novel method to enlarge feature support overlap for domain generalization.
Specifically, we introduce Bayesian random data augmentation to increase sample diversity and overcome the deficiency of IRM.
arXiv Detail & Related papers (2024-07-08T09:16:42Z) - Equivalence of the Empirical Risk Minimization to Regularization on the Family of f-Divergences [45.935798913942904]
The solution to empirical risk minimization with $f$-divergence regularization (ERM-$f$DR) is presented.
Examples of the solution for particular choices of the function $f$ are presented.
arXiv Detail & Related papers (2024-02-01T11:12:00Z) - Model-Based Epistemic Variance of Values for Risk-Aware Policy Optimization [59.758009422067]
We consider the problem of quantifying uncertainty over expected cumulative rewards in model-based reinforcement learning.
We propose a new uncertainty Bellman equation (UBE) whose solution converges to the true posterior variance over values.
We introduce a general-purpose policy optimization algorithm, Q-Uncertainty Soft Actor-Critic (QU-SAC) that can be applied for either risk-seeking or risk-averse policy optimization.
arXiv Detail & Related papers (2023-12-07T15:55:58Z) - Analysis of the Relative Entropy Asymmetry in the Regularization of
Empirical Risk Minimization [70.540936204654]
The effect of the relative entropy asymmetry is analyzed in the empirical risk minimization with relative entropy regularization (ERM-RER) problem.
A novel regularization is introduced, coined Type-II regularization, that allows for solutions to the ERM-RER problem with a support that extends outside the support of the reference measure.
arXiv Detail & Related papers (2023-06-12T13:56:28Z) - On the Variance, Admissibility, and Stability of Empirical Risk
Minimization [80.26309576810844]
Empirical Risk Minimization (ERM) with squared loss may attain minimax suboptimal error rates.
We show that under mild assumptions, the suboptimality of ERM must be due to large bias rather than variance.
We also show that our estimates imply stability of ERM, complementing the main result of Caponnetto and Rakhlin (2006) for non-Donsker classes.
arXiv Detail & Related papers (2023-05-29T15:25:48Z) - Empirical Risk Minimization with Relative Entropy Regularization:
Optimality and Sensitivity Analysis [7.953455469099826]
The sensitivity of the expected empirical risk to deviations from the solution of the ERM-RER problem is studied.
The expectation of the sensitivity is upper bounded, up to a constant factor, by the square root of the lautum information between the models and the datasets.
arXiv Detail & Related papers (2022-02-09T10:55:14Z) - Disentangling Observed Causal Effects from Latent Confounders using
Method of Moments [67.27068846108047]
We provide guarantees on identifiability and learnability under mild assumptions.
We develop efficient algorithms based on coupled tensor decomposition with linear constraints to obtain scalable and guaranteed solutions.
arXiv Detail & Related papers (2021-01-17T07:48:45Z) - Empirical or Invariant Risk Minimization? A Sample Complexity
Perspective [49.43806345820883]
It is unclear when in-variant risk generalization (IRM) should be preferred over the widely-employed empirical risk minimization (ERM) framework.
We find that depending on the type of data generation mechanism, the two approaches might have very different finite sample and behavior.
We further investigate how different factors -- the number of environments, complexity of the model, and IRM penalty weight -- impact the sample complexity of IRM in relation to its distance from the OOD solutions.
arXiv Detail & Related papers (2020-10-30T17:55:30Z) - The Risks of Invariant Risk Minimization [52.7137956951533]
Invariant Risk Minimization is an objective based on the idea for learning deep, invariant features of data.
We present the first analysis of classification under the IRM objective--as well as these recently proposed alternatives--under a fairly natural and general model.
We show that IRM can fail catastrophically unless the test data are sufficiently similar to the training distribution--this is precisely the issue that it was intended to solve.
arXiv Detail & Related papers (2020-10-12T14:54:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.