ConceptX: A Framework for Latent Concept Analysis
- URL: http://arxiv.org/abs/2211.06642v1
- Date: Sat, 12 Nov 2022 11:31:09 GMT
- Title: ConceptX: A Framework for Latent Concept Analysis
- Authors: Firoj Alam and Fahim Dalvi and Nadir Durrani and Hassan Sajjad and
Abdul Rafae Khan and Jia Xu
- Abstract summary: We present ConceptX, a human-in-the-loop framework for interpreting and annotating latent representational space in Language Models (pLMs)
We use an unsupervised method to discover concepts learned in these models and enable a graphical interface for humans to generate explanations for the concepts.
- Score: 21.760620298330235
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The opacity of deep neural networks remains a challenge in deploying
solutions where explanation is as important as precision. We present ConceptX,
a human-in-the-loop framework for interpreting and annotating latent
representational space in pre-trained Language Models (pLMs). We use an
unsupervised method to discover concepts learned in these models and enable a
graphical interface for humans to generate explanations for the concepts. To
facilitate the process, we provide auto-annotations of the concepts (based on
traditional linguistic ontologies). Such annotations enable development of a
linguistic resource that directly represents latent concepts learned within
deep NLP models. These include not just traditional linguistic concepts, but
also task-specific or sensitive concepts (words grouped based on gender or
religious connotation) that helps the annotators to mark bias in the model. The
framework consists of two parts (i) concept discovery and (ii) annotation
platform.
Related papers
- ConcEPT: Concept-Enhanced Pre-Training for Language Models [57.778895980999124]
ConcEPT aims to infuse conceptual knowledge into pre-trained language models.
It exploits external entity concept prediction to predict the concepts of entities mentioned in the pre-training contexts.
Results of experiments show that ConcEPT gains improved conceptual knowledge with concept-enhanced pre-training.
arXiv Detail & Related papers (2024-01-11T05:05:01Z) - Interpreting Pretrained Language Models via Concept Bottlenecks [55.47515772358389]
Pretrained language models (PLMs) have made significant strides in various natural language processing tasks.
The lack of interpretability due to their black-box'' nature poses challenges for responsible implementation.
We propose a novel approach to interpreting PLMs by employing high-level, meaningful concepts that are easily understandable for humans.
arXiv Detail & Related papers (2023-11-08T20:41:18Z) - Text-to-Image Generation for Abstract Concepts [76.32278151607763]
We propose a framework of Text-to-Image generation for Abstract Concepts (TIAC)
The abstract concept is clarified into a clear intent with a detailed definition to avoid ambiguity.
The concept-dependent form is retrieved from an LLM-extracted form pattern set.
arXiv Detail & Related papers (2023-09-26T02:22:39Z) - Can LLMs facilitate interpretation of pre-trained language models? [18.77022630961142]
We propose using a large language model, ChatGPT, as an annotator to enable fine-grained interpretation analysis of pre-trained language models.
We discover latent concepts within pre-trained language models by applying agglomerative hierarchical clustering over contextualized representations.
Our findings demonstrate that ChatGPT produces accurate and semantically richer annotations compared to human-annotated concepts.
arXiv Detail & Related papers (2023-05-22T18:03:13Z) - Interpretable Neural-Symbolic Concept Reasoning [7.1904050674791185]
Concept-based models aim to address this issue by learning tasks based on a set of human-understandable concepts.
We propose the Deep Concept Reasoner (DCR), the first interpretable concept-based model that builds upon concept embeddings.
arXiv Detail & Related papers (2023-04-27T09:58:15Z) - Analyzing Encoded Concepts in Transformer Language Models [21.76062029833023]
ConceptX analyses how latent concepts are encoded in representations learned within pre-trained language models.
It uses clustering to discover the encoded concepts and explains them by aligning with a large set of human-defined concepts.
arXiv Detail & Related papers (2022-06-27T13:32:10Z) - Visual Superordinate Abstraction for Robust Concept Learning [80.15940996821541]
Concept learning constructs visual representations that are connected to linguistic semantics.
We ascribe the bottleneck to a failure of exploring the intrinsic semantic hierarchy of visual concepts.
We propose a visual superordinate abstraction framework for explicitly modeling semantic-aware visual subspaces.
arXiv Detail & Related papers (2022-05-28T14:27:38Z) - Discovering Latent Concepts Learned in BERT [21.760620298330235]
We study what latent concepts exist in the pre-trained BERT model.
We also release a novel BERT ConceptNet dataset (BCN) consisting of 174 concept labels and 1M annotated instances.
arXiv Detail & Related papers (2022-05-15T09:45:34Z) - Human-Centered Concept Explanations for Neural Networks [47.71169918421306]
We introduce concept explanations including the class of Concept Activation Vectors (CAV)
We then discuss approaches to automatically extract concepts, and approaches to address some of their caveats.
Finally, we discuss some case studies that showcase the utility of such concept-based explanations in synthetic settings and real world applications.
arXiv Detail & Related papers (2022-02-25T01:27:31Z) - Formalising Concepts as Grounded Abstractions [68.24080871981869]
This report shows how representation learning can be used to induce concepts from raw data.
The main technical goal of this report is to show how techniques from representation learning can be married with a lattice-theoretic formulation of conceptual spaces.
arXiv Detail & Related papers (2021-01-13T15:22:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.