Point-DAE: Denoising Autoencoders for Self-supervised Point Cloud Learning
- URL: http://arxiv.org/abs/2211.06841v4
- Date: Fri, 26 Jul 2024 02:51:08 GMT
- Title: Point-DAE: Denoising Autoencoders for Self-supervised Point Cloud Learning
- Authors: Yabin Zhang, Jiehong Lin, Ruihuang Li, Kui Jia, Lei Zhang,
- Abstract summary: We explore a more general denoising autoencoder for point cloud learning (Point-DAE) by investigating more types of corruptions beyond masking.
Specifically, we degrade the point cloud with certain corruptions as input, and learn an encoder-decoder model to reconstruct the original point cloud from its corrupted version.
- Score: 54.51061298877896
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Masked autoencoder has demonstrated its effectiveness in self-supervised point cloud learning. Considering that masking is a kind of corruption, in this work we explore a more general denoising autoencoder for point cloud learning (Point-DAE) by investigating more types of corruptions beyond masking. Specifically, we degrade the point cloud with certain corruptions as input, and learn an encoder-decoder model to reconstruct the original point cloud from its corrupted version. Three corruption families (\ie, density/masking, noise, and affine transformation) and a total of fourteen corruption types are investigated with traditional non-Transformer encoders. Besides the popular masking corruption, we identify another effective corruption family, \ie, affine transformation. The affine transformation disturbs all points globally, which is complementary to the masking corruption where some local regions are dropped. We also validate the effectiveness of affine transformation corruption with the Transformer backbones, where we decompose the reconstruction of the complete point cloud into the reconstructions of detailed local patches and rough global shape, alleviating the position leakage problem in the reconstruction. Extensive experiments on tasks of object classification, few-shot learning, robustness testing, part segmentation, and 3D object detection validate the effectiveness of the proposed method. The codes are available at \url{https://github.com/YBZh/Point-DAE}.
Related papers
- Sample-adaptive Augmentation for Point Cloud Recognition Against
Real-world Corruptions [20.95456179904285]
We propose an alternative to make sample-adaptive transformations based on the structure of the sample, named as AdaptPoint.
A discriminator is utilized to prevent the generation of excessive corruption that deviates from the original data distribution.
Experiments show that our method achieves state-of-the-art results on multiple corruption benchmarks, including ModelNet-C, our ScanObjectNN-C, and ShapeNet-C.
arXiv Detail & Related papers (2023-09-19T08:46:43Z) - Toward Unsupervised 3D Point Cloud Anomaly Detection using Variational
Autoencoder [10.097126085083827]
We present an end-to-end unsupervised anomaly detection framework for 3D point clouds.
We propose a deep variational autoencoder-based unsupervised anomaly detection network adapted to the 3D point cloud and an anomaly score specifically for 3D point clouds.
arXiv Detail & Related papers (2023-04-07T00:02:37Z) - SeRP: Self-Supervised Representation Learning Using Perturbed Point
Clouds [6.29475963948119]
SeRP consists of encoder-decoder architecture that takes perturbed or corrupted point clouds as inputs.
We have used Transformers and PointNet-based Autoencoders.
arXiv Detail & Related papers (2022-09-13T15:22:36Z) - Masked Autoencoders in 3D Point Cloud Representation Learning [7.617783375837524]
We propose masked Autoencoders in 3D point cloud representation learning (abbreviated as MAE3D)
We first split the input point cloud into patches and mask a portion of them, then use our Patch Embedding Module to extract the features of unmasked patches.
Comprehensive experiments demonstrate that the local features extracted by our MAE3D from point cloud patches are beneficial for downstream classification tasks.
arXiv Detail & Related papers (2022-07-04T16:13:27Z) - Point-M2AE: Multi-scale Masked Autoencoders for Hierarchical Point Cloud
Pre-training [56.81809311892475]
Masked Autoencoders (MAE) have shown great potentials in self-supervised pre-training for language and 2D image transformers.
We propose Point-M2AE, a strong Multi-scale MAE pre-training framework for hierarchical self-supervised learning of 3D point clouds.
arXiv Detail & Related papers (2022-05-28T11:22:53Z) - Self-Supervised Point Cloud Representation Learning with Occlusion
Auto-Encoder [63.77257588569852]
We present 3D Occlusion Auto-Encoder (3D-OAE) for learning representations for point clouds.
Our key idea is to randomly occlude some local patches of the input point cloud and establish the supervision via recovering the occluded patches.
In contrast with previous methods, our 3D-OAE can remove a large proportion of patches and predict them only with a small number of visible patches.
arXiv Detail & Related papers (2022-03-26T14:06:29Z) - Unsupervised Representation Learning for 3D Point Cloud Data [66.92077180228634]
We propose a simple yet effective approach for unsupervised point cloud learning.
In particular, we identify a very useful transformation which generates a good contrastive version of an original point cloud.
We conduct experiments on three downstream tasks which are 3D object classification, shape part segmentation and scene segmentation.
arXiv Detail & Related papers (2021-10-13T10:52:45Z) - PoinTr: Diverse Point Cloud Completion with Geometry-Aware Transformers [81.71904691925428]
We present a new method that reformulates point cloud completion as a set-to-set translation problem.
We also design a new model, called PoinTr, that adopts a transformer encoder-decoder architecture for point cloud completion.
Our method outperforms state-of-the-art methods by a large margin on both the new benchmarks and the existing ones.
arXiv Detail & Related papers (2021-08-19T17:58:56Z) - Image Inpainting by End-to-End Cascaded Refinement with Mask Awareness [66.55719330810547]
Inpainting arbitrary missing regions is challenging because learning valid features for various masked regions is nontrivial.
We propose a novel mask-aware inpainting solution that learns multi-scale features for missing regions in the encoding phase.
Our framework is validated both quantitatively and qualitatively via extensive experiments on three public datasets.
arXiv Detail & Related papers (2021-04-28T13:17:47Z) - OMNet: Learning Overlapping Mask for Partial-to-Partial Point Cloud
Registration [31.108056345511976]
OMNet is a global feature based iterative network for partial-to-partial point cloud registration.
We learn masks in a coarse-to-fine manner to reject non-overlapping regions, which converting the partial-to-partial registration to the registration of the same shapes.
arXiv Detail & Related papers (2021-03-01T11:59:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.