Evaluating CNN with Oscillatory Activation Function
- URL: http://arxiv.org/abs/2211.06878v1
- Date: Sun, 13 Nov 2022 11:17:13 GMT
- Title: Evaluating CNN with Oscillatory Activation Function
- Authors: Jeevanshi Sharma
- Abstract summary: CNNs capability to learn high-dimensional complex features from the images is the non-linearity introduced by the activation function.
This paper explores the performance of one of the CNN architecture ALexNet on MNIST and CIFAR10 datasets using oscillating activation function (GCU) and some other commonly used activation functions like ReLu, PReLu, and Mish.
- Score: 0.0
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: The reason behind CNNs capability to learn high-dimensional complex features
from the images is the non-linearity introduced by the activation function.
Several advanced activation functions have been discovered to improve the
training process of neural networks, as choosing an activation function is a
crucial step in the modeling. Recent research has proposed using an oscillating
activation function to solve classification problems inspired by the human
brain cortex. This paper explores the performance of one of the CNN
architecture ALexNet on MNIST and CIFAR10 datasets using oscillatory activation
function (GCU) and some other commonly used activation functions like ReLu,
PReLu, and Mish.
Related papers
- Multilinear Operator Networks [60.7432588386185]
Polynomial Networks is a class of models that does not require activation functions.
We propose MONet, which relies solely on multilinear operators.
arXiv Detail & Related papers (2024-01-31T16:52:19Z) - TSSR: A Truncated and Signed Square Root Activation Function for Neural
Networks [5.9622541907827875]
We introduce a new activation function called the Truncated and Signed Square Root (TSSR) function.
This function is distinctive because it is odd, nonlinear, monotone and differentiable.
It has the potential to improve the numerical stability of neural networks.
arXiv Detail & Related papers (2023-08-09T09:40:34Z) - Globally Optimal Training of Neural Networks with Threshold Activation
Functions [63.03759813952481]
We study weight decay regularized training problems of deep neural networks with threshold activations.
We derive a simplified convex optimization formulation when the dataset can be shattered at a certain layer of the network.
arXiv Detail & Related papers (2023-03-06T18:59:13Z) - Transformers with Learnable Activation Functions [63.98696070245065]
We use Rational Activation Function (RAF) to learn optimal activation functions during training according to input data.
RAF opens a new research direction for analyzing and interpreting pre-trained models according to the learned activation functions.
arXiv Detail & Related papers (2022-08-30T09:47:31Z) - Activation Functions: Dive into an optimal activation function [1.52292571922932]
We find an optimal activation function by defining it as a weighted sum of existing activation functions.
The study uses three activation functions, ReLU, tanh, and sin, over three popular image datasets.
arXiv Detail & Related papers (2022-02-24T12:44:11Z) - Evolution of Activation Functions: An Empirical Investigation [0.30458514384586394]
This work presents an evolutionary algorithm to automate the search for completely new activation functions.
We compare these new evolved activation functions to other existing and commonly used activation functions.
arXiv Detail & Related papers (2021-05-30T20:08:20Z) - Comparisons among different stochastic selection of activation layers
for convolutional neural networks for healthcare [77.99636165307996]
We classify biomedical images using ensembles of neural networks.
We select our activations among the following ones: ReLU, leaky ReLU, Parametric ReLU, ELU, Adaptive Piecewice Linear Unit, S-Shaped ReLU, Swish, Mish, Mexican Linear Unit, Parametric Deformable Linear Unit, Soft Root Sign.
arXiv Detail & Related papers (2020-11-24T01:53:39Z) - UNIPoint: Universally Approximating Point Processes Intensities [125.08205865536577]
We provide a proof that a class of learnable functions can universally approximate any valid intensity function.
We implement UNIPoint, a novel neural point process model, using recurrent neural networks to parameterise sums of basis function upon each event.
arXiv Detail & Related papers (2020-07-28T09:31:56Z) - A survey on modern trainable activation functions [0.0]
We propose a taxonomy of trainable activation functions and highlight common and distinctive proprieties of recent and past models.
We show that many of the proposed approaches are equivalent to adding neuron layers which use fixed (non-trainable) activation functions.
arXiv Detail & Related papers (2020-05-02T12:38:43Z) - Trainable Activation Function in Image Classification [0.0]
This paper focus on how to make the activation function trainable for deep neural networks.
We use series and linear combination of different activation functions make activation functions continuously variable.
arXiv Detail & Related papers (2020-04-28T03:50:53Z) - Non-linear Neurons with Human-like Apical Dendrite Activations [81.18416067005538]
We show that a standard neuron followed by our novel apical dendrite activation (ADA) can learn the XOR logical function with 100% accuracy.
We conduct experiments on six benchmark data sets from computer vision, signal processing and natural language processing.
arXiv Detail & Related papers (2020-02-02T21:09:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.