Adaptive Federated Minimax Optimization with Lower Complexities
- URL: http://arxiv.org/abs/2211.07303v4
- Date: Thu, 29 Feb 2024 05:00:32 GMT
- Title: Adaptive Federated Minimax Optimization with Lower Complexities
- Authors: Feihu Huang, Xinrui Wang, Junyi Li, Songcan Chen
- Abstract summary: We propose an efficient adaptive minimax optimization algorithm (i.e., AdaFGDA) to solve these minimax problems.
It builds our momentum-based reduced and localSGD techniques, and it flexibly incorporate various adaptive learning rates.
- Score: 82.51223883622552
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Federated learning is a popular distributed and privacy-preserving learning
paradigm in machine learning. Recently, some federated learning algorithms have
been proposed to solve the distributed minimax problems. However, these
federated minimax algorithms still suffer from high gradient or communication
complexity. Meanwhile, few algorithm focuses on using adaptive learning rate to
accelerate these algorithms. To fill this gap, in the paper, we study a class
of nonconvex minimax optimization, and propose an efficient adaptive federated
minimax optimization algorithm (i.e., AdaFGDA) to solve these distributed
minimax problems. Specifically, our AdaFGDA builds on the momentum-based
variance reduced and local-SGD techniques, and it can flexibly incorporate
various adaptive learning rates by using the unified adaptive matrices.
Theoretically, we provide a solid convergence analysis framework for our
AdaFGDA algorithm under non-i.i.d. setting. Moreover, we prove our AdaFGDA
algorithm obtains a lower gradient (i.e., stochastic first-order oracle, SFO)
complexity of $\tilde{O}(\epsilon^{-3})$ with lower communication complexity of
$\tilde{O}(\epsilon^{-2})$ in finding $\epsilon$-stationary point of the
nonconvex minimax problems. Experimentally, we conduct some experiments on the
deep AUC maximization and robust neural network training tasks to verify
efficiency of our algorithms.
Related papers
- Faster Adaptive Decentralized Learning Algorithms [24.379734053137597]
We propose a class of faster distributed non decentralized algorithms (i.e. AdaMDOS and AdaMDOF) for adaptive learning and finite-sum optimization.
Some experimental results demonstrate efficiency of our algorithms.
arXiv Detail & Related papers (2024-08-19T08:05:33Z) - Solving a Class of Non-Convex Minimax Optimization in Federated Learning [84.98927714326908]
The minimax problems arise throughout machine learning applications, ranging from machine learning training to large-scale learning.
We propose a class of algorithms for non minimax problems (emphi) that reduce complexity to $varepsilon-6)$.
We prove that FedSGDA-M has the best sample complexity of $O(kappa2-3)$ and the best-known communication of $O(kappa2-3)$.
arXiv Detail & Related papers (2023-10-05T15:48:41Z) - Decentralized Riemannian Algorithm for Nonconvex Minimax Problems [82.50374560598493]
The minimax algorithms for neural networks have been developed to solve many problems.
In this paper, we propose two types of minimax algorithms.
For the setting, we propose DRSGDA and prove that our method achieves a gradient.
arXiv Detail & Related papers (2023-02-08T01:42:45Z) - Faster Adaptive Federated Learning [84.38913517122619]
Federated learning has attracted increasing attention with the emergence of distributed data.
In this paper, we propose an efficient adaptive algorithm (i.e., FAFED) based on momentum-based variance reduced technique in cross-silo FL.
arXiv Detail & Related papers (2022-12-02T05:07:50Z) - Faster Adaptive Momentum-Based Federated Methods for Distributed
Composition Optimization [14.579475552088692]
We propose a class of faster federated composition optimization algorithms (i.e. MFCGD and AdaMFCGD) to solve the non distributed composition problems.
In particular, our adaptive algorithm (i.e., AdaMFCGD) uses a unified adaptive matrix to flexibly incorporate various adaptive learning rates.
arXiv Detail & Related papers (2022-11-03T15:17:04Z) - Fast Adaptive Federated Bilevel Optimization [14.579475552088692]
We propose a novel adaptive federated bilevel optimization algorithm (i.e.,AdaFBiO) to solve the distributed bilevel optimization problems.
AdaFBiO uses the unified adaptive matrices to flexibly incorporate various adaptive learning rates to update variables in both UL and LL problems.
We provide a convergence analysis framework for our AdaFBiO algorithm, and prove it needs the sample of complexity of $tildeO(epsilon-3)$ with communication complexity of $tildeO(epsilon-2)$ to obtain an $
arXiv Detail & Related papers (2022-11-02T13:55:47Z) - Federated Minimax Optimization: Improved Convergence Analyses and
Algorithms [32.062312674333775]
We consider non minimax optimization, is gaining prominence many modern machine learning applications such as GANs.
We provide a novel and tighter analysis algorithm, improves convergence communication guarantees in the existing literature.
arXiv Detail & Related papers (2022-03-09T16:21:31Z) - Accelerated Proximal Alternating Gradient-Descent-Ascent for Nonconvex
Minimax Machine Learning [12.069630105460766]
An Alternating Table-descentascent (AltGDA) is an computation optimization algorithm that has been widely used for training in various machine learning applications.
In this paper, we develop a single-loop fast computation-of-the-loop gradient-of-the-loop algorithm to solve non minimax optimization problems.
arXiv Detail & Related papers (2021-12-22T04:33:27Z) - BiAdam: Fast Adaptive Bilevel Optimization Methods [104.96004056928474]
Bilevel optimization has attracted increased interest in machine learning due to its many applications.
We provide a useful analysis framework for both the constrained and unconstrained optimization.
arXiv Detail & Related papers (2021-06-21T20:16:40Z) - Gradient Free Minimax Optimization: Variance Reduction and Faster
Convergence [120.9336529957224]
In this paper, we denote the non-strongly setting on the magnitude of a gradient-free minimax optimization problem.
We show that a novel zeroth-order variance reduced descent algorithm achieves the best known query complexity.
arXiv Detail & Related papers (2020-06-16T17:55:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.