An Overview on Controllable Text Generation via Variational
Auto-Encoders
- URL: http://arxiv.org/abs/2211.07954v1
- Date: Tue, 15 Nov 2022 07:36:11 GMT
- Title: An Overview on Controllable Text Generation via Variational
Auto-Encoders
- Authors: Haoqin Tu, Yitong Li
- Abstract summary: Recent advances in neural-based generative modeling have reignited the hopes of having computer systems capable of conversing with humans.
Latent variable models (LVM) such as variational auto-encoders (VAEs) are designed to characterize the distributional pattern of textual data.
This overview gives an introduction to existing generation schemes, problems associated with text variational auto-encoders, and a review of several applications about the controllable generation.
- Score: 15.97186478109836
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent advances in neural-based generative modeling have reignited the hopes
of having computer systems capable of conversing with humans and able to
understand natural language. The employment of deep neural architectures has
been largely explored in a multitude of context and tasks to fulfill various
user needs. On one hand, producing textual content that meets specific
requirements is of priority for a model to seamlessly conduct conversations
with different groups of people. On the other hand, latent variable models
(LVM) such as variational auto-encoders (VAEs) as one of the most popular
genres of generative models are designed to characterize the distributional
pattern of textual data. Thus they are inherently capable of learning the
integral textual features that are worth exploring for controllable pursuits.
\noindent This overview gives an introduction to existing generation schemes,
problems associated with text variational auto-encoders, and a review of
several applications about the controllable generation that are instantiations
of these general formulations,\footnote{A detailed paper list is available at
\url{https://github.com/ImKeTT/CTG-latentAEs}} as well as related datasets,
metrics and discussions for future researches. Hopefully, this overview will
provide an overview of living questions, popular methodologies and raw thoughts
for controllable language generation under the scope of variational
auto-encoder.
Related papers
- generAItor: Tree-in-the-Loop Text Generation for Language Model
Explainability and Adaptation [28.715001906405362]
Large language models (LLMs) are widely deployed in various downstream tasks, e.g., auto-completion, aided writing, or chat-based text generation.
We tackle this shortcoming by proposing a tree-in-the-loop approach, where a visual representation of the beam search tree is the central component for analyzing, explaining, and adapting the generated outputs.
We present generAItor, a visual analytics technique, augmenting the central beam search tree with various task-specific widgets, providing targeted visualizations and interaction possibilities.
arXiv Detail & Related papers (2024-03-12T13:09:15Z) - Foundational Models Defining a New Era in Vision: A Survey and Outlook [151.49434496615427]
Vision systems to see and reason about the compositional nature of visual scenes are fundamental to understanding our world.
The models learned to bridge the gap between such modalities coupled with large-scale training data facilitate contextual reasoning, generalization, and prompt capabilities at test time.
The output of such models can be modified through human-provided prompts without retraining, e.g., segmenting a particular object by providing a bounding box, having interactive dialogues by asking questions about an image or video scene or manipulating the robot's behavior through language instructions.
arXiv Detail & Related papers (2023-07-25T17:59:18Z) - Foundation Models for Natural Language Processing -- Pre-trained
Language Models Integrating Media [0.0]
Foundation Models are pre-trained language models for Natural Language Processing.
They can be applied to a wide range of different media and problem domains, ranging from image and video processing to robot control learning.
This book provides a comprehensive overview of the state of the art in research and applications of Foundation Models.
arXiv Detail & Related papers (2023-02-16T20:42:04Z) - Unsupervised Neural Stylistic Text Generation using Transfer learning
and Adapters [66.17039929803933]
We propose a novel transfer learning framework which updates only $0.3%$ of model parameters to learn style specific attributes for response generation.
We learn style specific attributes from the PERSONALITY-CAPTIONS dataset.
arXiv Detail & Related papers (2022-10-07T00:09:22Z) - Twist Decoding: Diverse Generators Guide Each Other [116.20780037268801]
We introduce Twist decoding, a simple and general inference algorithm that generates text while benefiting from diverse models.
Our method does not assume the vocabulary, tokenization or even generation order is shared.
arXiv Detail & Related papers (2022-05-19T01:27:53Z) - Deep Latent-Variable Models for Text Generation [7.119436003155924]
Deep neural network-based end-to-end architectures have been widely adopted.
End-to-end approach conflates all sub-modules, which used to be designed by complex handcrafted rules, into a holistic encode-decode architecture.
This dissertation presents how deep latent-variable models can improve over the standard encoder-decoder model for text generation.
arXiv Detail & Related papers (2022-03-03T23:06:39Z) - GenNI: Human-AI Collaboration for Data-Backed Text Generation [102.08127062293111]
Table2Text systems generate textual output based on structured data utilizing machine learning.
GenNI (Generation Negotiation Interface) is an interactive visual system for high-level human-AI collaboration in producing descriptive text.
arXiv Detail & Related papers (2021-10-19T18:07:07Z) - Topical Language Generation using Transformers [4.795530213347874]
This paper presents a novel approach for Topical Language Generation (TLG) by combining a pre-trained LM with topic modeling information.
We extend our model by introducing new parameters and functions to influence the quantity of the topical features presented in the generated text.
Our experimental results demonstrate that our model outperforms the state-of-the-art results on coherency, diversity, and fluency while being faster in decoding.
arXiv Detail & Related papers (2021-03-11T03:45:24Z) - Controllable Text Generation with Focused Variation [71.07811310799664]
Focused-Variation Network (FVN) is a novel model to control language generation.
FVN learns disjoint discrete latent spaces for each attribute inside codebooks, which allows for both controllability and diversity.
We evaluate FVN on two text generation datasets with annotated content and style, and show state-of-the-art performance as assessed by automatic and human evaluations.
arXiv Detail & Related papers (2020-09-25T06:31:06Z) - PALM: Pre-training an Autoencoding&Autoregressive Language Model for
Context-conditioned Generation [92.7366819044397]
Self-supervised pre-training has emerged as a powerful technique for natural language understanding and generation.
This work presents PALM with a novel scheme that jointly pre-trains an autoencoding and autoregressive language model on a large unlabeled corpus.
An extensive set of experiments show that PALM achieves new state-of-the-art results on a variety of language generation benchmarks.
arXiv Detail & Related papers (2020-04-14T06:25:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.