Grasping the Inconspicuous
- URL: http://arxiv.org/abs/2211.08182v1
- Date: Tue, 15 Nov 2022 14:45:50 GMT
- Title: Grasping the Inconspicuous
- Authors: Hrishikesh Gupta, Stefan Thalhammer, Markus Leitner, Markus Vincze
- Abstract summary: We study deep learning 6D pose estimation from RGB images only for transparent object grasping.
Experiments demonstrate the effectiveness of RGB image space for grasping transparent objects.
- Score: 15.274311118568715
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Transparent objects are common in day-to-day life and hence find many
applications that require robot grasping. Many solutions toward object grasping
exist for non-transparent objects. However, due to the unique visual properties
of transparent objects, standard 3D sensors produce noisy or distorted
measurements. Modern approaches tackle this problem by either refining the
noisy depth measurements or using some intermediate representation of the
depth. Towards this, we study deep learning 6D pose estimation from RGB images
only for transparent object grasping. To train and test the suitability of
RGB-based object pose estimation, we construct a dataset of RGB-only images
with 6D pose annotations. The experiments demonstrate the effectiveness of RGB
image space for grasping transparent objects.
Related papers
- Depth-based Privileged Information for Boosting 3D Human Pose Estimation on RGB [48.31210455404533]
Heatmap-based 3D pose estimator is able to hallucinate depth information from the RGB frames given at inference time.
depth information is used exclusively during training by enforcing our RGB-based hallucination network to learn similar features to a backbone pre-trained only on depth data.
arXiv Detail & Related papers (2024-09-17T11:59:34Z) - ASGrasp: Generalizable Transparent Object Reconstruction and Grasping from RGB-D Active Stereo Camera [9.212504138203222]
We propose ASGrasp, a 6-DoF grasp detection network that uses an RGB-D active stereo camera.
Our system distinguishes itself by its ability to directly utilize raw IR and RGB images for transparent object geometry reconstruction.
Our experiments demonstrate that ASGrasp can achieve over 90% success rate for generalizable transparent object grasping.
arXiv Detail & Related papers (2024-05-09T09:44:51Z) - MatchU: Matching Unseen Objects for 6D Pose Estimation from RGB-D Images [57.71600854525037]
We propose a Fuse-Describe-Match strategy for 6D pose estimation from RGB-D images.
MatchU is a generic approach that fuses 2D texture and 3D geometric cues for 6D pose prediction of unseen objects.
arXiv Detail & Related papers (2024-03-03T14:01:03Z) - RGB-based Category-level Object Pose Estimation via Decoupled Metric
Scale Recovery [72.13154206106259]
We propose a novel pipeline that decouples the 6D pose and size estimation to mitigate the influence of imperfect scales on rigid transformations.
Specifically, we leverage a pre-trained monocular estimator to extract local geometric information.
A separate branch is designed to directly recover the metric scale of the object based on category-level statistics.
arXiv Detail & Related papers (2023-09-19T02:20:26Z) - MVTrans: Multi-View Perception of Transparent Objects [29.851395075937255]
We forgo the unreliable depth map from RGB-D sensors and extend the stereo based method.
Our proposed method, MVTrans, is an end-to-end multi-view architecture with multiple perception capabilities.
We establish a novel procedural photo-realistic dataset generation pipeline and create a large-scale transparent object detection dataset.
arXiv Detail & Related papers (2023-02-22T22:45:28Z) - PoET: Pose Estimation Transformer for Single-View, Multi-Object 6D Pose
Estimation [6.860183454947986]
We present a transformer-based approach that takes an RGB image as input and predicts a 6D pose for each object in the image.
Besides the image, our network does not require any additional information such as depth maps or 3D object models.
We achieve state-of-the-art results for RGB-only approaches on the challenging YCB-V dataset.
arXiv Detail & Related papers (2022-11-25T14:07:14Z) - MonoGraspNet: 6-DoF Grasping with a Single RGB Image [73.96707595661867]
6-DoF robotic grasping is a long-lasting but unsolved problem.
Recent methods utilize strong 3D networks to extract geometric grasping representations from depth sensors.
We propose the first RGB-only 6-DoF grasping pipeline called MonoGraspNet.
arXiv Detail & Related papers (2022-09-26T21:29:50Z) - ClearPose: Large-scale Transparent Object Dataset and Benchmark [7.342978076186365]
We contribute a large-scale real-world RGB-Depth transparent object dataset named ClearPose to serve as a benchmark dataset for segmentation, scene-level depth completion and object-centric pose estimation tasks.
The ClearPose dataset contains over 350K labeled real-world RGB-Depth frames and 4M instance annotations covering 63 household objects.
arXiv Detail & Related papers (2022-03-08T07:29:31Z) - Sparse Pose Trajectory Completion [87.31270669154452]
We propose a method to learn, even using a dataset where objects appear only in sparsely sampled views.
This is achieved with a cross-modal pose trajectory transfer mechanism.
Our method is evaluated on the Pix3D and ShapeNet datasets.
arXiv Detail & Related papers (2021-05-01T00:07:21Z) - RGB-D Local Implicit Function for Depth Completion of Transparent
Objects [43.238923881620494]
Majority of perception methods in robotics require depth information provided by RGB-D cameras.
Standard 3D sensors fail to capture depth of transparent objects due to refraction and absorption of light.
We present a novel framework that can complete missing depth given noisy RGB-D input.
arXiv Detail & Related papers (2021-04-01T17:00:04Z) - Is Depth Really Necessary for Salient Object Detection? [50.10888549190576]
We make the first attempt in realizing an unified depth-aware framework with only RGB information as input for inference.
Not only surpasses the state-of-the-art performances on five public RGB SOD benchmarks, but also surpasses the RGBD-based methods on five benchmarks by a large margin.
arXiv Detail & Related papers (2020-05-30T13:40:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.