SPADE4: Sparsity and Delay Embedding based Forecasting of Epidemics
- URL: http://arxiv.org/abs/2211.08277v2
- Date: Tue, 13 Jun 2023 21:42:09 GMT
- Title: SPADE4: Sparsity and Delay Embedding based Forecasting of Epidemics
- Authors: Esha Saha, Lam Si Tung Ho and Giang Tran
- Abstract summary: We propose Sparsity and Delay Embedding based Forecasting (SPADE4) for predicting epidemics.
We show that our approach outperforms compartmental models when applied to both simulated and real data.
- Score: 2.578242050187029
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Predicting the evolution of diseases is challenging, especially when the data
availability is scarce and incomplete. The most popular tools for modelling and
predicting infectious disease epidemics are compartmental models. They stratify
the population into compartments according to health status and model the
dynamics of these compartments using dynamical systems. However, these
predefined systems may not capture the true dynamics of the epidemic due to the
complexity of the disease transmission and human interactions. In order to
overcome this drawback, we propose Sparsity and Delay Embedding based
Forecasting (SPADE4) for predicting epidemics. SPADE4 predicts the future
trajectory of an observable variable without the knowledge of the other
variables or the underlying system. We use random features model with sparse
regression to handle the data scarcity issue and employ Takens' delay embedding
theorem to capture the nature of the underlying system from the observed
variable. We show that our approach outperforms compartmental models when
applied to both simulated and real data.
Related papers
- A Temporally Disentangled Contrastive Diffusion Model for Spatiotemporal Imputation [35.46631415365955]
We introduce a conditional diffusion framework called C$2$TSD, which incorporates disentangled temporal (trend and seasonality) representations as conditional information.
Our experiments on three real-world datasets demonstrate the superior performance of our approach compared to a number of state-of-the-art baselines.
arXiv Detail & Related papers (2024-02-18T11:59:04Z) - MedDiffusion: Boosting Health Risk Prediction via Diffusion-based Data
Augmentation [58.93221876843639]
This paper introduces a novel, end-to-end diffusion-based risk prediction model, named MedDiffusion.
It enhances risk prediction performance by creating synthetic patient data during training to enlarge sample space.
It discerns hidden relationships between patient visits using a step-wise attention mechanism, enabling the model to automatically retain the most vital information for generating high-quality data.
arXiv Detail & Related papers (2023-10-04T01:36:30Z) - Metapopulation Graph Neural Networks: Deep Metapopulation Epidemic
Modeling with Human Mobility [14.587916407752719]
We propose a novel hybrid model called MepoGNN for multi-step multi-region epidemic forecasting.
Our model can not only predict the number of confirmed cases but also explicitly learn the epidemiological parameters.
arXiv Detail & Related papers (2023-06-26T17:09:43Z) - EINNs: Epidemiologically-Informed Neural Networks [75.34199997857341]
We introduce a new class of physics-informed neural networks-EINN-crafted for epidemic forecasting.
We investigate how to leverage both the theoretical flexibility provided by mechanistic models as well as the data-driven expressability afforded by AI models.
arXiv Detail & Related papers (2022-02-21T18:59:03Z) - Deep diffusion-based forecasting of COVID-19 by incorporating
network-level mobility information [22.60685417365995]
We develop a deep learning-based timeseries model for probabilistic forecasting called Auto-regressive Mixed Density Diffusion Dynamic Network(ARM3Dnet)
We show that our model can outperform both traditional statistical and deep learning models in forecasting the number of Covid-19 deaths and cases at the county level in the United States.
arXiv Detail & Related papers (2021-11-09T15:18:03Z) - Integrating Expert ODEs into Neural ODEs: Pharmacology and Disease
Progression [71.7560927415706]
latent hybridisation model (LHM) integrates a system of expert-designed ODEs with machine-learned Neural ODEs to fully describe the dynamics of the system.
We evaluate LHM on synthetic data as well as real-world intensive care data of COVID-19 patients.
arXiv Detail & Related papers (2021-06-05T11:42:45Z) - STELAR: Spatio-temporal Tensor Factorization with Latent Epidemiological
Regularization [76.57716281104938]
We develop a tensor method to predict the evolution of epidemic trends for many regions simultaneously.
STELAR enables long-term prediction by incorporating latent temporal regularization through a system of discrete-time difference equations.
We conduct experiments using both county- and state-level COVID-19 data and show that our model can identify interesting latent patterns of the epidemic.
arXiv Detail & Related papers (2020-12-08T21:21:47Z) - An Optimal Control Approach to Learning in SIDARTHE Epidemic model [67.22168759751541]
We propose a general approach for learning time-variant parameters of dynamic compartmental models from epidemic data.
We forecast the epidemic evolution in Italy and France.
arXiv Detail & Related papers (2020-10-28T10:58:59Z) - OutbreakFlow: Model-based Bayesian inference of disease outbreak
dynamics with invertible neural networks and its application to the COVID-19
pandemics in Germany [0.19791587637442667]
We present a novel combination of epidemiological modeling with specialized neural networks.
We are able to obtain reliable probabilistic estimates for important disease characteristics, such as generation time, fraction of undetected infections, likelihood of transmission before symptom onset, and reporting delays using a very moderate amount of real-world observations.
arXiv Detail & Related papers (2020-10-01T11:01:49Z) - A General Framework for Survival Analysis and Multi-State Modelling [70.31153478610229]
We use neural ordinary differential equations as a flexible and general method for estimating multi-state survival models.
We show that our model exhibits state-of-the-art performance on popular survival data sets and demonstrate its efficacy in a multi-state setting.
arXiv Detail & Related papers (2020-06-08T19:24:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.