Motor imagery classification using EEG spectrograms
- URL: http://arxiv.org/abs/2211.08350v1
- Date: Tue, 15 Nov 2022 17:57:17 GMT
- Title: Motor imagery classification using EEG spectrograms
- Authors: Saadat Ullah Khan, Muhammad Majid, Syed Muhammad Anwar
- Abstract summary: limb movement imagination (MI) could be significant for a brain-computer interface (BCI) system.
Using MI detection through electroencephalography (EEG), we can recognize the imagination of movement in a user.
In this paper, we utilize pre-trained deep learning (DL) algorithms for the classification of imagined upper limb movements.
- Score: 9.05607520128194
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The loss of limb motion arising from damage to the spinal cord is a
disability that could effect people while performing their day-to-day
activities. The restoration of limb movement would enable people with spinal
cord injury to interact with their environment more naturally and this is where
a brain-computer interface (BCI) system could be beneficial. The detection of
limb movement imagination (MI) could be significant for such a BCI, where the
detected MI can guide the computer system. Using MI detection through
electroencephalography (EEG), we can recognize the imagination of movement in a
user and translate this into a physical movement. In this paper, we utilize
pre-trained deep learning (DL) algorithms for the classification of imagined
upper limb movements. We use a publicly available EEG dataset with data
representing seven classes of limb movements. We compute the spectrograms of
the time series EEG signal and use them as an input to the DL model for MI
classification. Our novel approach for the classification of upper limb
movements using pre-trained DL algorithms and spectrograms has achieved
significantly improved results for seven movement classes. When compared with
the recently proposed state-of-the-art methods, our algorithm achieved a
significant average accuracy of 84.9% for classifying seven movements.
Related papers
- fMRI from EEG is only Deep Learning away: the use of interpretable DL to
unravel EEG-fMRI relationships [68.8204255655161]
We present an interpretable domain grounded solution to recover the activity of several subcortical regions from multichannel EEG data.
We recover individual spatial and time-frequency patterns of scalp EEG predictive of the hemodynamic signal in the subcortical nuclei.
arXiv Detail & Related papers (2022-10-23T15:11:37Z) - DynDepNet: Learning Time-Varying Dependency Structures from fMRI Data
via Dynamic Graph Structure Learning [58.94034282469377]
We propose DynDepNet, a novel method for learning the optimal time-varying dependency structure of fMRI data induced by downstream prediction tasks.
Experiments on real-world fMRI datasets, for the task of sex classification, demonstrate that DynDepNet achieves state-of-the-art results.
arXiv Detail & Related papers (2022-09-27T16:32:11Z) - Upper Limb Movement Recognition utilising EEG and EMG Signals for
Rehabilitative Robotics [0.0]
We propose a novel decision-level multisensor fusion technique for upper limb movement classification.
The system will integrate EEG signals with EMG signals, retrieve effective information from both sources to understand and predict the desire of the user.
arXiv Detail & Related papers (2022-07-18T14:51:23Z) - Classification of Upper Arm Movements from EEG signals using Machine
Learning with ICA Analysis [0.0]
This paper proposes a unique algorithm for classifying left/right-hand movements by utilizing Multi-layer Perceptron Neural Network.
The intervention of unwanted signals contaminates the EEG signals which influence the performance of the algorithm.
arXiv Detail & Related papers (2021-07-18T18:56:28Z) - Continuous Decoding of Daily-Life Hand Movements from Forearm Muscle
Activity for Enhanced Myoelectric Control of Hand Prostheses [78.120734120667]
We introduce a novel method, based on a long short-term memory (LSTM) network, to continuously map forearm EMG activity onto hand kinematics.
Ours is the first reported work on the prediction of hand kinematics that uses this challenging dataset.
Our results suggest that the presented method is suitable for the generation of control signals for the independent and proportional actuation of the multiple DOFs of state-of-the-art hand prostheses.
arXiv Detail & Related papers (2021-04-29T00:11:32Z) - Online Body Schema Adaptation through Cost-Sensitive Active Learning [63.84207660737483]
The work was implemented in a simulation environment, using the 7DoF arm of the iCub robot simulator.
A cost-sensitive active learning approach is used to select optimal joint configurations.
The results show cost-sensitive active learning has similar accuracy to the standard active learning approach, while reducing in about half the executed movement.
arXiv Detail & Related papers (2021-01-26T16:01:02Z) - Deep learning-based classification of fine hand movements from low
frequency EEG [5.414308305392762]
The classification of different fine hand movements from EEG signals represents a relevant research challenge.
We trained and tested a newly proposed convolutional neural network (CNN)
CNN achieved good performance in both datasets and they were similar or superior to the baseline models.
arXiv Detail & Related papers (2020-11-13T07:16:06Z) - Relational Graph Learning on Visual and Kinematics Embeddings for
Accurate Gesture Recognition in Robotic Surgery [84.73764603474413]
We propose a novel online approach of multi-modal graph network (i.e., MRG-Net) to dynamically integrate visual and kinematics information.
The effectiveness of our method is demonstrated with state-of-the-art results on the public JIGSAWS dataset.
arXiv Detail & Related papers (2020-11-03T11:00:10Z) - Motion Pyramid Networks for Accurate and Efficient Cardiac Motion
Estimation [51.72616167073565]
We propose Motion Pyramid Networks, a novel deep learning-based approach for accurate and efficient cardiac motion estimation.
We predict and fuse a pyramid of motion fields from multiple scales of feature representations to generate a more refined motion field.
We then use a novel cyclic teacher-student training strategy to make the inference end-to-end and further improve the tracking performance.
arXiv Detail & Related papers (2020-06-28T21:03:19Z) - Deep Learning of Movement Intent and Reaction Time for EEG-informed
Adaptation of Rehabilitation Robots [0.0]
adaptation is a crucial mechanism for rehabilitation robots in promoting motor learning.
We propose a deep convolutional neural network (CNN) that uses electroencephalography (EEG) as an objective measurement of two kinematics components.
Our results demonstrate how individual movement components implicated in distinct types of motor learning can be predicted from synchronized EEG data.
arXiv Detail & Related papers (2020-02-18T13:20:46Z) - Effect of Analysis Window and Feature Selection on Classification of
Hand Movements Using EMG Signal [0.20999222360659603]
Recently, research on myoelectric control based on pattern recognition (PR) shows promising results with the aid of machine learning classifiers.
By offering multiple class movements and intuitive control, this method has the potential to power an amputated subject to perform everyday life movements.
We show that effective data preprocessing and optimum feature selection helps to improve the classification accuracy of hand movements.
arXiv Detail & Related papers (2020-02-02T19:03:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.