Orthogonal Polynomials Approximation Algorithm (OPAA):a functional
analytic approach to estimating probability densities
- URL: http://arxiv.org/abs/2211.08594v3
- Date: Sat, 20 Jan 2024 21:56:55 GMT
- Title: Orthogonal Polynomials Approximation Algorithm (OPAA):a functional
analytic approach to estimating probability densities
- Authors: Lilian W. Bialokozowicz
- Abstract summary: We present the new Orthogonal Polynomials Approximation Algorithm (OPAA)
OPAA estimates probability distributions using functional analytic approach.
It can be applied to estimating the normalizing weight of the posterior.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: We present the new Orthogonal Polynomials Approximation Algorithm (OPAA), a
parallelizable algorithm that estimates probability distributions using
functional analytic approach: first, it finds a smooth functional estimate of
the probability distribution, whether it is normalized or not; second, the
algorithm provides an estimate of the normalizing weight; and third, the
algorithm proposes a new computation scheme to compute such estimates.
A core component of OPAA is a special transform of the square root of the
joint distribution into a special functional space of our construct. Through
this transform, the evidence is equated with the $L^2$ norm of the transformed
function, squared. Hence, the evidence can be estimated by the sum of squares
of the transform coefficients. Computations can be parallelized and completed
in one pass.
OPAA can be applied broadly to the estimation of probability density
functions. In Bayesian problems, it can be applied to estimating the
normalizing weight of the posterior, which is also known as the evidence,
serving as an alternative to existing optimization-based methods.
Related papers
- Regularized Projection Matrix Approximation with Applications to Community Detection [1.3761665705201904]
This paper introduces a regularized projection matrix approximation framework designed to recover cluster information from the affinity matrix.
We investigate three distinct penalty functions, each specifically tailored to address bounded, positive, and sparse scenarios.
Numerical experiments conducted on both synthetic and real-world datasets reveal that our regularized projection matrix approximation approach significantly outperforms state-of-the-art methods in clustering performance.
arXiv Detail & Related papers (2024-05-26T15:18:22Z) - Variable Substitution and Bilinear Programming for Aligning Partially Overlapping Point Sets [48.1015832267945]
This research presents a method to meet requirements through the minimization objective function of the RPM algorithm.
A branch-and-bound (BnB) algorithm is devised, which solely branches over the parameters, thereby boosting convergence rate.
Empirical evaluations demonstrate better robustness of the proposed methodology against non-rigid deformation, positional noise, and outliers, when compared with prevailing state-of-the-art transformations.
arXiv Detail & Related papers (2024-05-14T13:28:57Z) - Efficient Model-Free Exploration in Low-Rank MDPs [76.87340323826945]
Low-Rank Markov Decision Processes offer a simple, yet expressive framework for RL with function approximation.
Existing algorithms are either (1) computationally intractable, or (2) reliant upon restrictive statistical assumptions.
We propose the first provably sample-efficient algorithm for exploration in Low-Rank MDPs.
arXiv Detail & Related papers (2023-07-08T15:41:48Z) - Positive definite nonparametric regression using an evolutionary
algorithm with application to covariance function estimation [0.0]
We propose a novel nonparametric regression framework for estimating covariance functions of stationary processes.
Our method can impose positive definiteness, as well as isotropy and monotonicity, on the estimators.
Our method provides more reliable estimates for long-range dependence.
arXiv Detail & Related papers (2023-04-25T22:01:14Z) - Determining probability density functions with adiabatic quantum computing [0.0]
We present a method for fitting one-dimensional probability distributions as a practical example of how analog and gate-based computation can be used together.
In particular, we propose a strategy for encoding data within an adiabatic evolution model, which accomodates the fitting of strictly monotonic functions.
arXiv Detail & Related papers (2023-03-20T18:00:00Z) - Fast Computation of Optimal Transport via Entropy-Regularized Extragradient Methods [75.34939761152587]
Efficient computation of the optimal transport distance between two distributions serves as an algorithm that empowers various applications.
This paper develops a scalable first-order optimization-based method that computes optimal transport to within $varepsilon$ additive accuracy.
arXiv Detail & Related papers (2023-01-30T15:46:39Z) - Improving Metric Dimensionality Reduction with Distributed Topology [68.8204255655161]
DIPOLE is a dimensionality-reduction post-processing step that corrects an initial embedding by minimizing a loss functional with both a local, metric term and a global, topological term.
We observe that DIPOLE outperforms popular methods like UMAP, t-SNE, and Isomap on a number of popular datasets.
arXiv Detail & Related papers (2021-06-14T17:19:44Z) - Distributed Variational Bayesian Algorithms Over Sensor Networks [6.572330981878818]
We propose two novel distributed VB algorithms for general Bayesian inference problem.
The proposed algorithms have excellent performance, which are almost as good as the corresponding centralized VB algorithm relying on all data available in a fusion center.
arXiv Detail & Related papers (2020-11-27T08:12:18Z) - Amortized Conditional Normalized Maximum Likelihood: Reliable Out of
Distribution Uncertainty Estimation [99.92568326314667]
We propose the amortized conditional normalized maximum likelihood (ACNML) method as a scalable general-purpose approach for uncertainty estimation.
Our algorithm builds on the conditional normalized maximum likelihood (CNML) coding scheme, which has minimax optimal properties according to the minimum description length principle.
We demonstrate that ACNML compares favorably to a number of prior techniques for uncertainty estimation in terms of calibration on out-of-distribution inputs.
arXiv Detail & Related papers (2020-11-05T08:04:34Z) - Stochastic Saddle-Point Optimization for Wasserstein Barycenters [69.68068088508505]
We consider the populationimation barycenter problem for random probability measures supported on a finite set of points and generated by an online stream of data.
We employ the structure of the problem and obtain a convex-concave saddle-point reformulation of this problem.
In the setting when the distribution of random probability measures is discrete, we propose an optimization algorithm and estimate its complexity.
arXiv Detail & Related papers (2020-06-11T19:40:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.