Graph Filters for Signal Processing and Machine Learning on Graphs
- URL: http://arxiv.org/abs/2211.08854v2
- Date: Mon, 19 Feb 2024 21:13:45 GMT
- Title: Graph Filters for Signal Processing and Machine Learning on Graphs
- Authors: Elvin Isufi, Fernando Gama, David I. Shuman, Santiago Segarra
- Abstract summary: We provide a comprehensive overview of graph filters, including the different filtering categories, design strategies for each type, and trade-offs between different types of graph filters.
We discuss how to extend graph filters into filter banks and graph neural networks to enhance the representational power.
Our aim is that this article provides a unifying framework for both beginner and experienced researchers, as well as a common understanding.
- Score: 83.29608206147515
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Filters are fundamental in extracting information from data. For time series
and image data that reside on Euclidean domains, filters are the crux of many
signal processing and machine learning techniques, including convolutional
neural networks. Increasingly, modern data also reside on networks and other
irregular domains whose structure is better captured by a graph. To process and
learn from such data, graph filters account for the structure of the underlying
data domain. In this article, we provide a comprehensive overview of graph
filters, including the different filtering categories, design strategies for
each type, and trade-offs between different types of graph filters. We discuss
how to extend graph filters into filter banks and graph neural networks to
enhance the representational power; that is, to model a broader variety of
signal classes, data patterns, and relationships. We also showcase the
fundamental role of graph filters in signal processing and machine learning
applications. Our aim is that this article provides a unifying framework for
both beginner and experienced researchers, as well as a common understanding
that promotes collaborations at the intersections of signal processing, machine
learning, and application domains.
Related papers
Err
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.