CASPR: Customer Activity Sequence-based Prediction and Representation
- URL: http://arxiv.org/abs/2211.09174v1
- Date: Wed, 16 Nov 2022 19:46:31 GMT
- Title: CASPR: Customer Activity Sequence-based Prediction and Representation
- Authors: Pin-Jung Chen, Sahil Bhatnagar, Damian Konrad Kowalczyk, Mayank
Shrivastava
- Abstract summary: We propose a novel approach to encode customer transactions into a generic representation of a customer's association with the business.
We then evaluate these embeddings as features to train multiple models spanning a variety of applications.
Our experiments at scale validate CASPR for both small & large enterprise applications.
- Score: 2.0668471963669606
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Tasks critical to enterprise profitability, such as customer churn
prediction, fraudulent account detection or customer lifetime value estimation,
are often tackled by models trained on features engineered from customer data
in tabular format. Application-specific feature engineering adds development,
operationalization and maintenance costs over time. Recent advances in
representation learning present an opportunity to simplify and generalize
feature engineering across applications. When applying these advancements to
tabular data researchers deal with data heterogeneity, variations in customer
engagement history or the sheer volume of enterprise datasets. In this paper,
we propose a novel approach to encode tabular data containing customer
transactions, purchase history and other interactions into a generic
representation of a customer's association with the business. We then evaluate
these embeddings as features to train multiple models spanning a variety of
applications. CASPR, Customer Activity Sequence-based Prediction and
Representation, applies Transformer architecture to encode activity sequences
to improve model performance and avoid bespoke feature engineering across
applications. Our experiments at scale validate CASPR for both small \& large
enterprise applications.
Related papers
- Forewarned is Forearmed: Leveraging LLMs for Data Synthesis through Failure-Inducing Exploration [90.41908331897639]
Large language models (LLMs) have significantly benefited from training on diverse, high-quality task-specific data.
We present a novel approach, ReverseGen, designed to automatically generate effective training samples.
arXiv Detail & Related papers (2024-10-22T06:43:28Z) - A Simple Baseline for Predicting Events with Auto-Regressive Tabular Transformers [70.20477771578824]
Existing approaches to event prediction include time-aware positional embeddings, learned row and field encodings, and oversampling methods for addressing class imbalance.
We propose a simple but flexible baseline using standard autoregressive LLM-style transformers with elementary positional embeddings and a causal language modeling objective.
Our baseline outperforms existing approaches across popular datasets and can be employed for various use-cases.
arXiv Detail & Related papers (2024-10-14T15:59:16Z) - CRAFT Your Dataset: Task-Specific Synthetic Dataset Generation Through Corpus Retrieval and Augmentation [51.2289822267563]
We propose Corpus Retrieval and Augmentation for Fine-Tuning (CRAFT), a method for generating synthetic datasets.
We use large-scale public web-crawled corpora and similarity-based document retrieval to find other relevant human-written documents.
We demonstrate that CRAFT can efficiently generate large-scale task-specific training datasets for four diverse tasks.
arXiv Detail & Related papers (2024-09-03T17:54:40Z) - Consumer Transactions Simulation through Generative Adversarial Networks [0.07373617024876725]
This paper presents an innovative application of Generative Adversarial Networks (GANs) to generate synthetic retail transaction data.
We diverge from conventional methodologies by integrating SKU data into our GAN architecture and using more sophisticated embedding methods.
Preliminary results demonstrate enhanced realism in simulated transactions measured by comparing generated items with real ones.
arXiv Detail & Related papers (2024-08-07T09:45:24Z) - Privacy Adhering Machine Un-learning in NLP [66.17039929803933]
In real world industry use Machine Learning to build models on user data.
Such mandates require effort both in terms of data as well as model retraining.
continuous removal of data and model retraining steps do not scale.
We propose textitMachine Unlearning to tackle this challenge.
arXiv Detail & Related papers (2022-12-19T16:06:45Z) - UserBERT: Modeling Long- and Short-Term User Preferences via
Self-Supervision [6.8904125699168075]
This paper extends the BERT model to e-commerce user data for pre-training representations in a self-supervised manner.
By viewing user actions in sequences as analogous to words in sentences, we extend the existing BERT model to user behavior data.
We propose methods for the tokenization of different types of user behavior sequences, the generation of input representation, and a novel pretext task to enable the pre-trained model to learn from its own input.
arXiv Detail & Related papers (2022-02-14T08:31:36Z) - PreSizE: Predicting Size in E-Commerce using Transformers [76.33790223551074]
PreSizE is a novel deep learning framework which utilizes Transformers for accurate size prediction.
We demonstrate that PreSizE is capable of achieving superior prediction performance compared to previous state-of-the-art baselines.
As a proof of concept, we demonstrate that size predictions made by PreSizE can be effectively integrated into an existing production recommender system.
arXiv Detail & Related papers (2021-05-04T15:23:59Z) - Friendship is All we Need: A Multi-graph Embedding Approach for Modeling
Customer Behavior [1.181206257787103]
We propose a multi-graph embedding approach for creating a non-linear representation of customers.
We are able to predict users' future behavior with a reasonably high accuracy only by having the information of their friendship network.
arXiv Detail & Related papers (2020-10-06T14:50:05Z) - Towards Intelligent Risk-based Customer Segmentation in Banking [0.0]
We present an intelligent data-driven pipeline composed of a set of processing elements to move customers' data from one system to another.
The goal is to present a novel intelligent customer segmentation process which automates the feature engineering, i.e., the process of using (banking) domain knowledge to extract features from raw data.
Our proposed method is able to achieve accuracy of 91% compared to classical approaches in terms of detecting, identifying and classifying transaction to the right classification.
arXiv Detail & Related papers (2020-09-29T11:22:04Z) - Transformer Hawkes Process [79.16290557505211]
We propose a Transformer Hawkes Process (THP) model, which leverages the self-attention mechanism to capture long-term dependencies.
THP outperforms existing models in terms of both likelihood and event prediction accuracy by a notable margin.
We provide a concrete example, where THP achieves improved prediction performance for learning multiple point processes when incorporating their relational information.
arXiv Detail & Related papers (2020-02-21T13:48:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.