Prompt Tuning for Parameter-efficient Medical Image Segmentation
- URL: http://arxiv.org/abs/2211.09233v1
- Date: Wed, 16 Nov 2022 21:55:05 GMT
- Title: Prompt Tuning for Parameter-efficient Medical Image Segmentation
- Authors: Marc Fischer, Alexander Bartler, Bin Yang
- Abstract summary: We propose and investigate several contributions to achieve a parameter-efficient but effective adaptation for semantic segmentation on two medical imaging datasets.
We pre-train this architecture with a dedicated dense self-supervision scheme based on assignments to online generated prototypes.
We demonstrate that the resulting neural network model is able to attenuate the gap between fully fine-tuned and parameter-efficiently adapted models.
- Score: 79.09285179181225
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Neural networks pre-trained on a self-supervision scheme have become the
standard when operating in data rich environments with scarce annotations. As
such, fine-tuning a model to a downstream task in a parameter-efficient but
effective way, e.g. for a new set of classes in the case of semantic
segmentation, is of increasing importance. In this work, we propose and
investigate several contributions to achieve a parameter-efficient but
effective adaptation for semantic segmentation on two medical imaging datasets.
Relying on the recently popularized prompt tuning approach, we provide a
prompt-able UNet (PUNet) architecture, that is frozen after pre-training, but
adaptable throughout the network by class-dependent learnable prompt tokens. We
pre-train this architecture with a dedicated dense self-supervision scheme
based on assignments to online generated prototypes (contrastive prototype
assignment, CPA) of a student teacher combination alongside a concurrent
segmentation loss on a subset of classes. We demonstrate that the resulting
neural network model is able to attenuate the gap between fully fine-tuned and
parameter-efficiently adapted models on CT imaging datasets. As such, the
difference between fully fine-tuned and prompt-tuned variants amounts to only
3.83 pp for the TCIA/BTCV dataset and 2.67 pp for the CT-ORG dataset in the
mean Dice Similarity Coefficient (DSC, in %) while only prompt tokens,
corresponding to 0.85% of the pre-trained backbone model with 6.8M frozen
parameters, are adjusted. The code for this work is available on
https://github.com/marcdcfischer/PUNet .
Related papers
- Low-Rank Continual Pyramid Vision Transformer: Incrementally Segment Whole-Body Organs in CT with Light-Weighted Adaptation [10.746776960260297]
We propose a new continual whole-body organ segmentation model with light-weighted low-rank adaptation (LoRA)
We first train and freeze a pyramid vision transformer (PVT) base segmentation model on the initial task, then continually add light-weighted trainable LoRA parameters to the frozen model for each new learning task.
Our proposed model continually segments new organs without catastrophic forgetting and meanwhile maintaining a low parameter increasing rate.
arXiv Detail & Related papers (2024-10-07T02:00:13Z) - DiTMoS: Delving into Diverse Tiny-Model Selection on Microcontrollers [34.282971510732736]
We introduce DiTMoS, a novel DNN training and inference framework with a selector-classifiers architecture.
A composition of weak models can exhibit high diversity and the union of them can significantly boost the accuracy upper bound.
We deploy DiTMoS on the Neucleo STM32F767ZI board and evaluate it based on three time-series datasets for human activity recognition, keywords spotting, and emotion recognition.
arXiv Detail & Related papers (2024-03-14T02:11:38Z) - Dynamic Adapter Meets Prompt Tuning: Parameter-Efficient Transfer Learning for Point Cloud Analysis [51.14136878142034]
Point cloud analysis has achieved outstanding performance by transferring point cloud pre-trained models.
Existing methods for model adaptation usually update all model parameters, which is inefficient as it relies on high computational costs.
In this paper, we aim to study parameter-efficient transfer learning for point cloud analysis with an ideal trade-off between task performance and parameter efficiency.
arXiv Detail & Related papers (2024-03-03T08:25:04Z) - Prompt-Matched Semantic Segmentation [96.99924127527002]
The objective of this work is to explore how to effectively adapt pre-trained foundation models to various downstream tasks of image semantic segmentation.
We propose a novel Inter-Stage Prompt-Matched Framework, which maintains the original structure of the foundation model while generating visual prompts adaptively for task-oriented tuning.
A lightweight module termed Semantic-aware Prompt Matcher is then introduced to hierarchically interpolate between two stages to learn reasonable prompts for each specific task.
arXiv Detail & Related papers (2022-08-22T09:12:53Z) - Adapting the Mean Teacher for keypoint-based lung registration under
geometric domain shifts [75.51482952586773]
deep neural networks generally require plenty of labeled training data and are vulnerable to domain shifts between training and test data.
We present a novel approach to geometric domain adaptation for image registration, adapting a model from a labeled source to an unlabeled target domain.
Our method consistently improves on the baseline model by 50%/47% while even matching the accuracy of models trained on target data.
arXiv Detail & Related papers (2022-07-01T12:16:42Z) - FiT: Parameter Efficient Few-shot Transfer Learning for Personalized and
Federated Image Classification [47.24770508263431]
We develop FiLM Transfer (FiT) which fulfills requirements in the image classification setting.
FiT uses an automatically configured Naive Bayes classifier on top of a fixed backbone that has been pretrained on large image datasets.
We show that FiT achieves better classification accuracy than the state-of-the-art Big Transfer (BiT) algorithm at low-shot and on the challenging VTAB-1k benchmark.
arXiv Detail & Related papers (2022-06-17T10:17:20Z) - DSEE: Dually Sparsity-embedded Efficient Tuning of Pre-trained Language
Models [152.29364079385635]
As pre-trained models grow bigger, the fine-tuning process can be time-consuming and computationally expensive.
We propose a framework for resource- and parameter-efficient fine-tuning by leveraging the sparsity prior in both weight updates and the final model weights.
Our proposed framework, dubbed Dually Sparsity-Embedded Efficient Tuning (DSEE), aims to achieve two key objectives: (i) parameter efficient fine-tuning and (ii) resource-efficient inference.
arXiv Detail & Related papers (2021-10-30T03:29:47Z) - Pre-Trained Models for Heterogeneous Information Networks [57.78194356302626]
We propose a self-supervised pre-training and fine-tuning framework, PF-HIN, to capture the features of a heterogeneous information network.
PF-HIN consistently and significantly outperforms state-of-the-art alternatives on each of these tasks, on four datasets.
arXiv Detail & Related papers (2020-07-07T03:36:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.