RDRN: Recursively Defined Residual Network for Image Super-Resolution
- URL: http://arxiv.org/abs/2211.09462v1
- Date: Thu, 17 Nov 2022 11:06:29 GMT
- Title: RDRN: Recursively Defined Residual Network for Image Super-Resolution
- Authors: Alexander Panaetov, Karim Elhadji Daou, Igor Samenko, Evgeny Tetin,
and Ilya Ivanov
- Abstract summary: Deep convolutional neural networks (CNNs) have obtained remarkable performance in single image super-resolution.
We propose a novel network architecture which utilizes attention blocks efficiently.
- Score: 58.64907136562178
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Deep convolutional neural networks (CNNs) have obtained remarkable
performance in single image super-resolution (SISR). However, very deep
networks can suffer from training difficulty and hardly achieve further
performance gain. There are two main trends to solve that problem: improving
the network architecture for better propagation of features through large
number of layers and designing an attention mechanism for selecting most
informative features. Recent SISR solutions propose advanced attention and
self-attention mechanisms. However, constructing a network to use an attention
block in the most efficient way is a challenging problem. To address this
issue, we propose a general recursively defined residual block (RDRB) for
better feature extraction and propagation through network layers. Based on RDRB
we designed recursively defined residual network (RDRN), a novel network
architecture which utilizes attention blocks efficiently. Extensive experiments
show that the proposed model achieves state-of-the-art results on several
popular super-resolution benchmarks and outperforms previous methods by up to
0.43 dB.
Related papers
- Iterative Soft Shrinkage Learning for Efficient Image Super-Resolution [91.3781512926942]
Image super-resolution (SR) has witnessed extensive neural network designs from CNN to transformer architectures.
This work investigates the potential of network pruning for super-resolution iteration to take advantage of off-the-shelf network designs and reduce the underlying computational overhead.
We propose a novel Iterative Soft Shrinkage-Percentage (ISS-P) method by optimizing the sparse structure of a randomly network at each and tweaking unimportant weights with a small amount proportional to the magnitude scale on-the-fly.
arXiv Detail & Related papers (2023-03-16T21:06:13Z) - SAR Despeckling Using Overcomplete Convolutional Networks [53.99620005035804]
despeckling is an important problem in remote sensing as speckle degrades SAR images.
Recent studies show that convolutional neural networks(CNNs) outperform classical despeckling methods.
This study employs an overcomplete CNN architecture to focus on learning low-level features by restricting the receptive field.
We show that the proposed network improves despeckling performance compared to recent despeckling methods on synthetic and real SAR images.
arXiv Detail & Related papers (2022-05-31T15:55:37Z) - Image Super-resolution with An Enhanced Group Convolutional Neural
Network [102.2483249598621]
CNNs with strong learning abilities are widely chosen to resolve super-resolution problem.
We present an enhanced super-resolution group CNN (ESRGCNN) with a shallow architecture.
Experiments report that our ESRGCNN surpasses the state-of-the-arts in terms of SISR performance, complexity, execution speed, image quality evaluation and visual effect in SISR.
arXiv Detail & Related papers (2022-05-29T00:34:25Z) - Deep Networks for Image and Video Super-Resolution [30.75380029218373]
Single image super-resolution (SISR) is built using efficient convolutional units we refer to as mixed-dense connection blocks (MDCB)
We train two versions of our network to enhance complementary image qualities using different loss configurations.
We further employ our network for super-resolution task, where our network learns to aggregate information from multiple frames and maintain-temporal consistency.
arXiv Detail & Related papers (2022-01-28T09:15:21Z) - Deep Iterative Residual Convolutional Network for Single Image
Super-Resolution [31.934084942626257]
We propose a deep Iterative Super-Resolution Residual Convolutional Network (ISRResCNet)
It exploits the powerful image regularization and large-scale optimization techniques by training the deep network in an iterative manner with a residual learning approach.
Our method with a few trainable parameters improves the results for different scaling factors in comparison with the state-of-art methods.
arXiv Detail & Related papers (2020-09-07T12:54:14Z) - OverNet: Lightweight Multi-Scale Super-Resolution with Overscaling
Network [3.6683231417848283]
We introduce OverNet, a deep but lightweight convolutional network to solve SISR at arbitrary scale factors with a single model.
We show that our network outperforms previous state-of-the-art results in standard benchmarks while using fewer parameters than previous approaches.
arXiv Detail & Related papers (2020-08-05T22:10:29Z) - Implicit Euler ODE Networks for Single-Image Dehazing [33.34490764631837]
We propose an efficient end-to-end multi-level implicit network (MI-Net) for the single image dehazing problem.
Our method outperforms existing methods and achieves the state-of-the-art performance.
arXiv Detail & Related papers (2020-07-13T15:27:33Z) - Iterative Network for Image Super-Resolution [69.07361550998318]
Single image super-resolution (SISR) has been greatly revitalized by the recent development of convolutional neural networks (CNN)
This paper provides a new insight on conventional SISR algorithm, and proposes a substantially different approach relying on the iterative optimization.
A novel iterative super-resolution network (ISRN) is proposed on top of the iterative optimization.
arXiv Detail & Related papers (2020-05-20T11:11:47Z) - Deep Adaptive Inference Networks for Single Image Super-Resolution [72.7304455761067]
Single image super-resolution (SISR) has witnessed tremendous progress in recent years owing to the deployment of deep convolutional neural networks (CNNs)
In this paper, we take a step forward to address this issue by leveraging the adaptive inference networks for deep SISR (AdaDSR)
Our AdaDSR involves an SISR model as backbone and a lightweight adapter module which takes image features and resource constraint as input and predicts a map of local network depth.
arXiv Detail & Related papers (2020-04-08T10:08:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.