Towards Building Text-To-Speech Systems for the Next Billion Users
- URL: http://arxiv.org/abs/2211.09536v1
- Date: Thu, 17 Nov 2022 13:59:34 GMT
- Title: Towards Building Text-To-Speech Systems for the Next Billion Users
- Authors: Gokul Karthik Kumar, Praveen S V, Pratyush Kumar, Mitesh M. Khapra,
Karthik Nandakumar
- Abstract summary: We evaluate the choice of acoustic models, vocoders, supplementary loss functions, training schedules, and speaker and language diversity for Dravidian and Indo-Aryan languages.
We train and evaluate TTS models for 13 languages and find our models to significantly improve upon existing models in all languages as measured by mean opinion scores.
- Score: 18.290165216270452
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep learning based text-to-speech (TTS) systems have been evolving rapidly
with advances in model architectures, training methodologies, and
generalization across speakers and languages. However, these advances have not
been thoroughly investigated for Indian language speech synthesis. Such
investigation is computationally expensive given the number and diversity of
Indian languages, relatively lower resource availability, and the diverse set
of advances in neural TTS that remain untested. In this paper, we evaluate the
choice of acoustic models, vocoders, supplementary loss functions, training
schedules, and speaker and language diversity for Dravidian and Indo-Aryan
languages. Based on this, we identify monolingual models with FastPitch and
HiFi-GAN V1, trained jointly on male and female speakers to perform the best.
With this setup, we train and evaluate TTS models for 13 languages and find our
models to significantly improve upon existing models in all languages as
measured by mean opinion scores. We open-source all models on the Bhashini
platform.
Related papers
- An Initial Investigation of Language Adaptation for TTS Systems under Low-resource Scenarios [76.11409260727459]
This paper explores the language adaptation capability of ZMM-TTS, a recent SSL-based multilingual TTS system.
We demonstrate that the similarity in phonetics between the pre-training and target languages, as well as the language category, affects the target language's adaptation performance.
arXiv Detail & Related papers (2024-06-13T08:16:52Z) - Rapid Speaker Adaptation in Low Resource Text to Speech Systems using
Synthetic Data and Transfer learning [6.544954579068865]
We propose a transfer learning approach using high-resource language data and synthetically generated data.
We employ a three-step approach to train a high-quality single-speaker TTS system in a low-resource Indian language Hindi.
arXiv Detail & Related papers (2023-12-02T10:52:00Z) - AudioPaLM: A Large Language Model That Can Speak and Listen [79.44757696533709]
We introduce AudioPaLM, a large language model for speech understanding and generation.
AudioPaLM fuses text-based and speech-based language models.
It can process and generate text and speech with applications including speech recognition and speech-to-speech translation.
arXiv Detail & Related papers (2023-06-22T14:37:54Z) - MParrotTTS: Multilingual Multi-speaker Text to Speech Synthesis in Low
Resource Setting [16.37243395952266]
MParrotTTS is a unified multilingual, multi-speaker text-to-speech (TTS) synthesis model.
It adapts to a new language with minimal supervised data and generalizes to languages not seen while training the self-supervised backbone.
We present extensive results on six languages in terms of speech naturalness and speaker similarity in parallel and cross-lingual synthesis.
arXiv Detail & Related papers (2023-05-19T13:43:36Z) - Learning Cross-lingual Visual Speech Representations [108.68531445641769]
Cross-lingual self-supervised visual representation learning has been a growing research topic in the last few years.
We use the recently-proposed Raw Audio-Visual Speechs (RAVEn) framework to pre-train an audio-visual model with unlabelled data.
Our experiments show that: (1) multi-lingual models with more data outperform monolingual ones, but, when keeping the amount of data fixed, monolingual models tend to reach better performance.
arXiv Detail & Related papers (2023-03-14T17:05:08Z) - Learning to Speak from Text: Zero-Shot Multilingual Text-to-Speech with
Unsupervised Text Pretraining [65.30528567491984]
This paper proposes a method for zero-shot multilingual TTS using text-only data for the target language.
The use of text-only data allows the development of TTS systems for low-resource languages.
Evaluation results demonstrate highly intelligible zero-shot TTS with a character error rate of less than 12% for an unseen language.
arXiv Detail & Related papers (2023-01-30T00:53:50Z) - Virtuoso: Massive Multilingual Speech-Text Joint Semi-Supervised
Learning for Text-To-Speech [37.942466944970704]
This paper proposes Virtuoso, a massively multilingual speech-text joint semi-supervised learning framework for text-to-speech synthesis (TTS) models.
To train a TTS model from various types of speech and text data, different training schemes are designed to handle supervised (TTS and ASR data) and unsupervised (untranscribed speech and unspoken text) datasets.
Experimental evaluation shows that multilingual TTS models trained on Virtuoso can achieve significantly better naturalness and intelligibility than baseline ones in seen languages.
arXiv Detail & Related papers (2022-10-27T14:09:48Z) - Low-Resource Multilingual and Zero-Shot Multispeaker TTS [25.707717591185386]
We show that it is possible for a system to learn speaking a new language using just 5 minutes of training data.
We show the success of our proposed approach in terms of intelligibility, naturalness and similarity to target speaker.
arXiv Detail & Related papers (2022-10-21T20:03:37Z) - Discovering Phonetic Inventories with Crosslingual Automatic Speech
Recognition [71.49308685090324]
This paper investigates the influence of different factors (i.e., model architecture, phonotactic model, type of speech representation) on phone recognition in an unknown language.
We find that unique sounds, similar sounds, and tone languages remain a major challenge for phonetic inventory discovery.
arXiv Detail & Related papers (2022-01-26T22:12:55Z) - Towards Building ASR Systems for the Next Billion Users [15.867823754118422]
We make contributions towards building ASR systems for low resource languages from the Indian subcontinent.
First, we curate 17,000 hours of raw speech data for 40 Indian languages.
Using this raw speech data we pretrain several variants of wav2vec style models for 40 Indian languages.
arXiv Detail & Related papers (2021-11-06T19:34:33Z) - Towards Zero-shot Language Modeling [90.80124496312274]
We construct a neural model that is inductively biased towards learning human languages.
We infer this distribution from a sample of typologically diverse training languages.
We harness additional language-specific side information as distant supervision for held-out languages.
arXiv Detail & Related papers (2021-08-06T23:49:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.