Universal Approximation Property of Fully Convolutional Neural Networks
with Zero Padding
- URL: http://arxiv.org/abs/2211.09983v3
- Date: Mon, 4 Dec 2023 03:02:06 GMT
- Title: Universal Approximation Property of Fully Convolutional Neural Networks
with Zero Padding
- Authors: Geonho Hwang, Myungjoo Kang
- Abstract summary: CNNs function as tensor-to-tensor mappings, preserving the spatial structure of input data.
We show that CNNs can approximate arbitrary continuous functions in cases where both the input and output values exhibit the same spatial shape.
We also verify that deep, narrow CNNs possess the UAP as tensor-to-tensor functions.
- Score: 10.295288663157393
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The Convolutional Neural Network (CNN) is one of the most prominent neural
network architectures in deep learning. Despite its widespread adoption, our
understanding of its universal approximation properties has been limited due to
its intricate nature. CNNs inherently function as tensor-to-tensor mappings,
preserving the spatial structure of input data. However, limited research has
explored the universal approximation properties of fully convolutional neural
networks as arbitrary continuous tensor-to-tensor functions. In this study, we
demonstrate that CNNs, when utilizing zero padding, can approximate arbitrary
continuous functions in cases where both the input and output values exhibit
the same spatial shape. Additionally, we determine the minimum depth of the
neural network required for approximation and substantiate its optimality. We
also verify that deep, narrow CNNs possess the UAP as tensor-to-tensor
functions. The results encompass a wide range of activation functions, and our
research covers CNNs of all dimensions.
Related papers
- Universal Approximation and the Topological Neural Network [0.0]
A topological neural network (TNN) takes data from a Tychonoff topological space instead of the usual finite dimensional space.
A distributional neural network (DNN) that takes Borel measures as data is also introduced.
arXiv Detail & Related papers (2023-05-26T05:28:10Z) - Provable Data Subset Selection For Efficient Neural Network Training [73.34254513162898]
We introduce the first algorithm to construct coresets for emphRBFNNs, i.e., small weighted subsets that approximate the loss of the input data on any radial basis function network.
We then perform empirical evaluations on function approximation and dataset subset selection on popular network architectures and data sets.
arXiv Detail & Related papers (2023-03-09T10:08:34Z) - Continuous approximation by convolutional neural networks with a
sigmoidal function [0.0]
We present a class of convolutional neural networks (CNNs) called non-overlapping CNNs.
We prove that such networks with sigmoidal activation function are capable of approximating arbitrary continuous function defined on compact input sets with any desired degree of accuracy.
arXiv Detail & Related papers (2022-09-27T12:31:36Z) - What Can Be Learnt With Wide Convolutional Neural Networks? [69.55323565255631]
We study infinitely-wide deep CNNs in the kernel regime.
We prove that deep CNNs adapt to the spatial scale of the target function.
We conclude by computing the generalisation error of a deep CNN trained on the output of another deep CNN.
arXiv Detail & Related papers (2022-08-01T17:19:32Z) - SAR Despeckling Using Overcomplete Convolutional Networks [53.99620005035804]
despeckling is an important problem in remote sensing as speckle degrades SAR images.
Recent studies show that convolutional neural networks(CNNs) outperform classical despeckling methods.
This study employs an overcomplete CNN architecture to focus on learning low-level features by restricting the receptive field.
We show that the proposed network improves despeckling performance compared to recent despeckling methods on synthetic and real SAR images.
arXiv Detail & Related papers (2022-05-31T15:55:37Z) - Deep Architecture Connectivity Matters for Its Convergence: A
Fine-Grained Analysis [94.64007376939735]
We theoretically characterize the impact of connectivity patterns on the convergence of deep neural networks (DNNs) under gradient descent training.
We show that by a simple filtration on "unpromising" connectivity patterns, we can trim down the number of models to evaluate.
arXiv Detail & Related papers (2022-05-11T17:43:54Z) - Optimal Learning Rates of Deep Convolutional Neural Networks: Additive
Ridge Functions [19.762318115851617]
We consider the mean squared error analysis for deep convolutional neural networks.
We show that, for additive ridge functions, convolutional neural networks followed by one fully connected layer with ReLU activation functions can reach optimal mini-max rates.
arXiv Detail & Related papers (2022-02-24T14:22:32Z) - Neural networks with linear threshold activations: structure and
algorithms [1.795561427808824]
We show that 2 hidden layers are necessary and sufficient to represent any function representable in the class.
We also give precise bounds on the sizes of the neural networks required to represent any function in the class.
We propose a new class of neural networks that we call shortcut linear threshold networks.
arXiv Detail & Related papers (2021-11-15T22:33:52Z) - The Connection Between Approximation, Depth Separation and Learnability
in Neural Networks [70.55686685872008]
We study the connection between learnability and approximation capacity.
We show that learnability with deep networks of a target function depends on the ability of simpler classes to approximate the target.
arXiv Detail & Related papers (2021-01-31T11:32:30Z) - Approximation and Non-parametric Estimation of ResNet-type Convolutional
Neural Networks [52.972605601174955]
We show a ResNet-type CNN can attain the minimax optimal error rates in important function classes.
We derive approximation and estimation error rates of the aformentioned type of CNNs for the Barron and H"older classes.
arXiv Detail & Related papers (2019-03-24T19:42:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.