Who Says Elephants Can't Run: Bringing Large Scale MoE Models into Cloud
Scale Production
- URL: http://arxiv.org/abs/2211.10017v1
- Date: Fri, 18 Nov 2022 03:43:52 GMT
- Title: Who Says Elephants Can't Run: Bringing Large Scale MoE Models into Cloud
Scale Production
- Authors: Young Jin Kim, Rawn Henry, Raffy Fahim and Hany Hassan Awadalla
- Abstract summary: We introduce a highly efficient inference framework with several optimization approaches to accelerate the computation of sparse models.
We are able to deploy 136x larger models with 27% less cost and significantly better quality compared to the existing solutions.
- Score: 7.056223012587321
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Mixture of Experts (MoE) models with conditional execution of sparsely
activated layers have enabled training models with a much larger number of
parameters. As a result, these models have achieved significantly better
quality on various natural language processing tasks including machine
translation. However, it remains challenging to deploy such models in real-life
scenarios due to the large memory requirements and inefficient inference. In
this work, we introduce a highly efficient inference framework with several
optimization approaches to accelerate the computation of sparse models and cut
down the memory consumption significantly. While we achieve up to 26x speed-up
in terms of throughput, we also reduce the model size almost to one eighth of
the original 32-bit float model by quantizing expert weights into 4-bit
integers. As a result, we are able to deploy 136x larger models with 27% less
cost and significantly better quality compared to the existing solutions. This
enables a paradigm shift in deploying large scale multilingual MoE transformers
models replacing the traditional practice of distilling teacher models into
dozens of smaller models per language or task.
Related papers
- Dense Training, Sparse Inference: Rethinking Training of Mixture-of-Experts Language Models [62.4691912312317]
Mixture-of-Experts (MoE) language models can reduce computational costs by 2-4$times$ compared to dense models without sacrificing performance.
We propose a hybrid dense training and sparse inference framework for MoE models (DS-MoE) which achieves strong computation and parameter efficiency.
arXiv Detail & Related papers (2024-04-08T14:39:49Z) - XMoE: Sparse Models with Fine-grained and Adaptive Expert Selection [30.687511115573038]
tool is a novel MoE designed to enhance both the efficacy and efficiency of sparse MoE models.
tool can enhance model performance while decreasing the computation load at MoE layers by over 50% without sacrificing performance.
arXiv Detail & Related papers (2024-02-27T08:18:02Z) - Model Compression and Efficient Inference for Large Language Models: A
Survey [20.199282252344396]
Large language models have two prominent characteristics compared to smaller models.
The most notable aspect of large models is the very high cost associated with model finetuning or training.
Large models emphasize versatility and generalization rather than performance on a single task.
arXiv Detail & Related papers (2024-02-15T06:58:30Z) - Mixture of Quantized Experts (MoQE): Complementary Effect of Low-bit
Quantization and Robustness [10.196942053244468]
Large Mixture of Experts (MoE) models could achieve state-of-the-art quality on various language tasks.
MoQE is a simple weight-only quantization method applying ultra low-bit down to 2-bit quantizations only to expert weights.
We show that low-bit quantization together with the MoE architecture delivers a reliable model performance.
arXiv Detail & Related papers (2023-10-03T20:11:23Z) - Efficient Large Scale Language Modeling with Mixtures of Experts [61.45159383372181]
Mixture of Experts layers (MoEs) enable efficient scaling of language models through conditional computation.
This paper presents a detailed empirical study of how autoregressive MoE language models scale in comparison with dense models in a wide range of settings.
arXiv Detail & Related papers (2021-12-20T17:05:11Z) - MoEfication: Conditional Computation of Transformer Models for Efficient
Inference [66.56994436947441]
Transformer-based pre-trained language models can achieve superior performance on most NLP tasks due to large parameter capacity, but also lead to huge computation cost.
We explore to accelerate large-model inference by conditional computation based on the sparse activation phenomenon.
We propose to transform a large model into its mixture-of-experts (MoE) version with equal model size, namely MoEfication.
arXiv Detail & Related papers (2021-10-05T02:14:38Z) - Scalable and Efficient MoE Training for Multitask Multilingual Models [55.987536562357086]
We develop a system capable of scaling MoE models efficiently to trillions of parameters.
We also present new training methods to improve MoE sample efficiency and leverage expert pruning strategy to improve time efficiency.
A model trained with 10 billion parameters on 50 languages can achieve state-of-the-art performance in Machine Translation (MT) and multilingual natural language generation tasks.
arXiv Detail & Related papers (2021-09-22T00:57:46Z) - When Ensembling Smaller Models is More Efficient than Single Large
Models [52.38997176317532]
We show that ensembles can outperform single models with both higher accuracy and requiring fewer total FLOPs to compute.
This presents an interesting observation that output diversity in ensembling can often be more efficient than training larger models.
arXiv Detail & Related papers (2020-05-01T18:56:18Z) - Train Large, Then Compress: Rethinking Model Size for Efficient Training
and Inference of Transformers [94.43313684188819]
We study the impact of model size in this setting, focusing on Transformer models for NLP tasks that are limited by compute.
We first show that even though smaller Transformer models execute faster per iteration, wider and deeper models converge in significantly fewer steps.
This leads to an apparent trade-off between the training efficiency of large Transformer models and the inference efficiency of small Transformer models.
arXiv Detail & Related papers (2020-02-26T21:17:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.