Evaluating the Perceived Safety of Urban City via Maximum Entropy Deep
Inverse Reinforcement Learning
- URL: http://arxiv.org/abs/2211.10660v1
- Date: Sat, 19 Nov 2022 11:01:08 GMT
- Title: Evaluating the Perceived Safety of Urban City via Maximum Entropy Deep
Inverse Reinforcement Learning
- Authors: Yaxuan Wang, Zhixin Zeng, Qijun Zhao
- Abstract summary: inverse reinforcement learning (IRL) based framework for predicting urban safety and recovering the corresponding reward function.
We presented a scalable state representation method to model the prediction problem as a Markov decision process (MDP) and use reinforcement learning (RL) to solve the problem.
We will later open-source the crowdsourcing data collection site and the model proposed in this paper.
- Score: 10.605168966435981
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Inspired by expert evaluation policy for urban perception, we proposed a
novel inverse reinforcement learning (IRL) based framework for predicting urban
safety and recovering the corresponding reward function. We also presented a
scalable state representation method to model the prediction problem as a
Markov decision process (MDP) and use reinforcement learning (RL) to solve the
problem. Additionally, we built a dataset called SmallCity based on the
crowdsourcing method to conduct the research. As far as we know, this is the
first time the IRL approach has been introduced to the urban safety perception
and planning field to help experts quantitatively analyze perceptual features.
Our results showed that IRL has promising prospects in this field. We will
later open-source the crowdsourcing data collection site and the model proposed
in this paper.
Related papers
- Revolutionizing Urban Safety Perception Assessments: Integrating Multimodal Large Language Models with Street View Images [5.799322786332704]
Measuring urban safety perception is an important and complex task that traditionally relies heavily on human resources.
Recent advances in multimodal large language models (MLLMs) have demonstrated powerful reasoning and analytical capabilities.
We propose a method based on the pre-trained Contrastive Language-Image Pre-training (CLIP) feature and K-Nearest Neighbors (K-NN) retrieval to quickly assess the safety index of the entire city.
arXiv Detail & Related papers (2024-07-29T06:03:13Z) - Offline Imitation Learning with Model-based Reverse Augmentation [48.64791438847236]
We propose a novel model-based framework, called offline Imitation Learning with Self-paced Reverse Augmentation.
Specifically, we build a reverse dynamic model from the offline demonstrations, which can efficiently generate trajectories leading to the expert-observed states.
We use the subsequent reinforcement learning method to learn from the augmented trajectories and transit from expert-unobserved states to expert-observed states.
arXiv Detail & Related papers (2024-06-18T12:27:02Z) - Defending against Data Poisoning Attacks in Federated Learning via User Elimination [0.0]
This paper introduces a novel framework focused on the strategic elimination of adversarial users within a federated model.
We detect anomalies in the aggregation phase of the Federated Algorithm, by integrating metadata gathered by the local training instances with Differential Privacy techniques.
Our experiments demonstrate the efficacy of our methods, significantly mitigating the risk of data poisoning while maintaining user privacy and model performance.
arXiv Detail & Related papers (2024-04-19T10:36:00Z) - A graph-based multimodal framework to predict gentrification [4.429604861456339]
We propose a novel graph-based multimodal deep learning framework to predict gentrification based on urban networks of tracts and essential facilities.
We train and test the proposed framework using data from Chicago, New York City, and Los Angeles.
The model successfully predicts census-tract level gentrification with 0.9 precision on average.
arXiv Detail & Related papers (2023-12-25T08:20:50Z) - Sample Complexity of Preference-Based Nonparametric Off-Policy
Evaluation with Deep Networks [58.469818546042696]
We study the sample efficiency of OPE with human preference and establish a statistical guarantee for it.
By appropriately selecting the size of a ReLU network, we show that one can leverage any low-dimensional manifold structure in the Markov decision process.
arXiv Detail & Related papers (2023-10-16T16:27:06Z) - A Bayesian Approach to Robust Inverse Reinforcement Learning [54.24816623644148]
We consider a Bayesian approach to offline model-based inverse reinforcement learning (IRL)
The proposed framework differs from existing offline model-based IRL approaches by performing simultaneous estimation of the expert's reward function and subjective model of environment dynamics.
Our analysis reveals a novel insight that the estimated policy exhibits robust performance when the expert is believed to have a highly accurate model of the environment.
arXiv Detail & Related papers (2023-09-15T17:37:09Z) - Semi-supervised Learning from Street-View Images and OpenStreetMap for
Automatic Building Height Estimation [59.6553058160943]
We propose a semi-supervised learning (SSL) method of automatically estimating building height from Mapillary SVI and OpenStreetMap data.
The proposed method leads to a clear performance boosting in estimating building heights with a Mean Absolute Error (MAE) around 2.1 meters.
The preliminary result is promising and motivates our future work in scaling up the proposed method based on low-cost VGI data.
arXiv Detail & Related papers (2023-07-05T18:16:30Z) - Massively Scalable Inverse Reinforcement Learning in Google Maps [3.1244966374281544]
Inverse reinforcement learning offers a powerful and general framework for learning humans' latent preferences in route recommendation.
No approach has successfully addressed planetary-scale problems with hundreds of millions of states and demonstration trajectories.
We revisit classic IRL methods in the routing context, and make the key observation that there exists a trade-off between the use of cheap, deterministic planners and expensive yet robust policies.
This insight is leveraged in Receding Horizon Inverse Planning (RHIP), a new generalization of classic IRL algorithms that provides fine-grained control over performance trade-offs via its planning horizon.
arXiv Detail & Related papers (2023-05-18T20:14:28Z) - When Demonstrations Meet Generative World Models: A Maximum Likelihood
Framework for Offline Inverse Reinforcement Learning [62.00672284480755]
This paper aims to recover the structure of rewards and environment dynamics that underlie observed actions in a fixed, finite set of demonstrations from an expert agent.
Accurate models of expertise in executing a task has applications in safety-sensitive applications such as clinical decision making and autonomous driving.
arXiv Detail & Related papers (2023-02-15T04:14:20Z) - A Novel CNN-LSTM-based Approach to Predict Urban Expansion [1.2233362977312943]
Time-series remote sensing data offer a rich source of information that can be used in a wide range of applications.
This paper addresses the challenge of using time-series satellite images to predict urban expansion.
We propose a novel two-step approach based on semantic image segmentation in order to predict urban expansion.
arXiv Detail & Related papers (2021-03-02T12:58:05Z) - SAMBA: Safe Model-Based & Active Reinforcement Learning [59.01424351231993]
SAMBA is a framework for safe reinforcement learning that combines aspects from probabilistic modelling, information theory, and statistics.
We evaluate our algorithm on a variety of safe dynamical system benchmarks involving both low and high-dimensional state representations.
We provide intuition as to the effectiveness of the framework by a detailed analysis of our active metrics and safety constraints.
arXiv Detail & Related papers (2020-06-12T10:40:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.