Personalized Federated Learning with Hidden Information on Personalized
Prior
- URL: http://arxiv.org/abs/2211.10684v1
- Date: Sat, 19 Nov 2022 12:45:19 GMT
- Title: Personalized Federated Learning with Hidden Information on Personalized
Prior
- Authors: Mingjia Shi, Yuhao Zhou, Qing Ye, Jiancheng Lv
- Abstract summary: We propose pFedBreD, a framework to solve the problem we model using Bregman divergence regularization.
Our experiments show that our proposal significantly outcompetes other PFL algorithms on multiple public benchmarks.
- Score: 18.8426865970643
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Federated learning (FL for simplification) is a distributed machine learning
technique that utilizes global servers and collaborative clients to achieve
privacy-preserving global model training without direct data sharing. However,
heterogeneous data problem, as one of FL's main problems, makes it difficult
for the global model to perform effectively on each client's local data. Thus,
personalized federated learning (PFL for simplification) aims to improve the
performance of the model on local data as much as possible. Bayesian learning,
where the parameters of the model are seen as random variables with a prior
assumption, is a feasible solution to the heterogeneous data problem due to the
tendency that the more local data the model use, the more it focuses on the
local data, otherwise focuses on the prior. When Bayesian learning is applied
to PFL, the global model provides global knowledge as a prior to the local
training process. In this paper, we employ Bayesian learning to model PFL by
assuming a prior in the scaled exponential family, and therefore propose
pFedBreD, a framework to solve the problem we model using Bregman divergence
regularization. Empirically, our experiments show that, under the prior
assumption of the spherical Gaussian and the first order strategy of mean
selection, our proposal significantly outcompetes other PFL algorithms on
multiple public benchmarks.
Related papers
- FedMAP: Unlocking Potential in Personalized Federated Learning through Bi-Level MAP Optimization [11.040916982022978]
Federated Learning (FL) enables collaborative training of machine learning models on decentralized data.
Data across clients often differs significantly due to class imbalance, feature distribution skew, sample size imbalance, and other phenomena.
We propose a novel Bayesian PFL framework using bi-level optimization to tackle the data heterogeneity challenges.
arXiv Detail & Related papers (2024-05-29T11:28:06Z) - An Aggregation-Free Federated Learning for Tackling Data Heterogeneity [50.44021981013037]
Federated Learning (FL) relies on the effectiveness of utilizing knowledge from distributed datasets.
Traditional FL methods adopt an aggregate-then-adapt framework, where clients update local models based on a global model aggregated by the server from the previous training round.
We introduce FedAF, a novel aggregation-free FL algorithm.
arXiv Detail & Related papers (2024-04-29T05:55:23Z) - Federated Learning with Projected Trajectory Regularization [65.6266768678291]
Federated learning enables joint training of machine learning models from distributed clients without sharing their local data.
One key challenge in federated learning is to handle non-identically distributed data across the clients.
We propose a novel federated learning framework with projected trajectory regularization (FedPTR) for tackling the data issue.
arXiv Detail & Related papers (2023-12-22T02:12:08Z) - Tunable Soft Prompts are Messengers in Federated Learning [55.924749085481544]
Federated learning (FL) enables multiple participants to collaboratively train machine learning models using decentralized data sources.
The lack of model privacy protection in FL becomes an unneglectable challenge.
We propose a novel FL training approach that accomplishes information exchange among participants via tunable soft prompts.
arXiv Detail & Related papers (2023-11-12T11:01:10Z) - PRIOR: Personalized Prior for Reactivating the Information Overlooked in
Federated Learning [16.344719695572586]
We propose a novel scheme to inject personalized prior knowledge into a global model in each client.
At the heart of our proposed approach is a framework, the PFL with Bregman Divergence (pFedBreD)
Our method reaches the state-of-the-art performances on 5 datasets and outperforms other methods by up to 3.5% across 8 benchmarks.
arXiv Detail & Related papers (2023-10-13T15:21:25Z) - PFL-GAN: When Client Heterogeneity Meets Generative Models in
Personalized Federated Learning [55.930403371398114]
We propose a novel generative adversarial network (GAN) sharing and aggregation strategy for personalized learning (PFL)
PFL-GAN addresses the client heterogeneity in different scenarios. More specially, we first learn the similarity among clients and then develop an weighted collaborative data aggregation.
The empirical results through the rigorous experimentation on several well-known datasets demonstrate the effectiveness of PFL-GAN.
arXiv Detail & Related papers (2023-08-23T22:38:35Z) - FedSoup: Improving Generalization and Personalization in Federated
Learning via Selective Model Interpolation [32.36334319329364]
Cross-silo federated learning (FL) enables the development of machine learning models on datasets distributed across data centers.
Recent research has found that current FL algorithms face a trade-off between local and global performance when confronted with distribution shifts.
We propose a novel federated model soup method to optimize the trade-off between local and global performance.
arXiv Detail & Related papers (2023-07-20T00:07:29Z) - The Best of Both Worlds: Accurate Global and Personalized Models through
Federated Learning with Data-Free Hyper-Knowledge Distillation [17.570719572024608]
FedHKD (Federated Hyper-Knowledge Distillation) is a novel FL algorithm in which clients rely on knowledge distillation to train local models.
Unlike other KD-based pFL methods, FedHKD does not rely on a public dataset nor it deploys a generative model at the server.
We conduct extensive experiments on visual datasets in a variety of scenarios, demonstrating that FedHKD provides significant improvement in both personalized as well as global model performance.
arXiv Detail & Related papers (2023-01-21T16:20:57Z) - Fine-tuning Global Model via Data-Free Knowledge Distillation for
Non-IID Federated Learning [86.59588262014456]
Federated Learning (FL) is an emerging distributed learning paradigm under privacy constraint.
We propose a data-free knowledge distillation method to fine-tune the global model in the server (FedFTG)
Our FedFTG significantly outperforms the state-of-the-art (SOTA) FL algorithms and can serve as a strong plugin for enhancing FedAvg, FedProx, FedDyn, and SCAFFOLD.
arXiv Detail & Related papers (2022-03-17T11:18:17Z) - Acceleration of Federated Learning with Alleviated Forgetting in Local
Training [61.231021417674235]
Federated learning (FL) enables distributed optimization of machine learning models while protecting privacy.
We propose FedReg, an algorithm to accelerate FL with alleviated knowledge forgetting in the local training stage.
Our experiments demonstrate that FedReg not only significantly improves the convergence rate of FL, especially when the neural network architecture is deep.
arXiv Detail & Related papers (2022-03-05T02:31:32Z) - Personalized Federated Learning with Clustered Generalization [16.178571176116073]
We study the recent emerging personalized learning (PFL) that aims at dealing with the challenging problem of Non-I.I.D. data in the learning setting.
Key difference between PFL and conventional FL methods in the training target.
We propose a novel concept called clustered generalization to handle the challenge of statistical heterogeneity in FL.
arXiv Detail & Related papers (2021-06-24T14:17:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.