A privacy-preserving data storage and service framework based on deep
learning and blockchain for construction workers' wearable IoT sensors
- URL: http://arxiv.org/abs/2211.10713v1
- Date: Sat, 19 Nov 2022 14:57:19 GMT
- Title: A privacy-preserving data storage and service framework based on deep
learning and blockchain for construction workers' wearable IoT sensors
- Authors: Xiaoshan Zhou and Pin-Chao Liao
- Abstract summary: Classifying brain signals collected by wearable Internet of Things (IoT) sensors, especially brain-computer interfaces (BCIs), is one of the fastest-growing areas of research.
In this article, we try to bridge this gap and propose a secure privacy-preserving protocol for implementing BCI applications.
We first transformed brain signals into images and used generative adversarial network to generate synthetic signals to protect data privacy.
In addition, we proposed a blockchain-based scheme and developed a prototype, which aims to make storing, querying and sharing personal neurophysiological data and analysis reports secure and privacy-aware.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Classifying brain signals collected by wearable Internet of Things (IoT)
sensors, especially brain-computer interfaces (BCIs), is one of the
fastest-growing areas of research. However, research has mostly ignored the
secure storage and privacy protection issues of collected personal
neurophysiological data. Therefore, in this article, we try to bridge this gap
and propose a secure privacy-preserving protocol for implementing BCI
applications. We first transformed brain signals into images and used
generative adversarial network to generate synthetic signals to protect data
privacy. Subsequently, we applied the paradigm of transfer learning for signal
classification. The proposed method was evaluated by a case study and results
indicate that real electroencephalogram data augmented with artificially
generated samples provide superior classification performance. In addition, we
proposed a blockchain-based scheme and developed a prototype on Ethereum, which
aims to make storing, querying and sharing personal neurophysiological data and
analysis reports secure and privacy-aware. The rights of three main transaction
bodies - construction workers, BCI service providers and project managers - are
described and the advantages of the proposed system are discussed. We believe
this paper provides a well-rounded solution to safeguard private data against
cyber-attacks, level the playing field for BCI application developers, and to
the end improve professional well-being in the industry.
Related papers
- Sustainable Diffusion-based Incentive Mechanism for Generative AI-driven Digital Twins in Industrial Cyber-Physical Systems [65.22300383287904]
Industrial Cyber-Physical Systems (ICPSs) are an integral component of modern manufacturing and industries.
By digitizing data throughout the product life cycle, Digital Twins (DTs) in ICPSs enable a shift from current industrial infrastructures to intelligent and adaptive infrastructures.
mechanisms that leverage sensing Industrial Internet of Things (IIoT) devices to share data for the construction of DTs are susceptible to adverse selection problems.
arXiv Detail & Related papers (2024-08-02T10:47:10Z) - Securing The Future Of Healthcare: Building A Resilient Defense System For Patient Data Protection [0.0]
The study predicts the severity of healthcare data breaches using a gradientboosting machine learning model.
The findings revealed that hacking and IT incidents are the most common type of breaches in the healthcare industry.
The model evaluation showed that the gradient boosting algorithm performs well.
arXiv Detail & Related papers (2024-07-23T04:25:35Z) - Privacy-Preserving Collaborative Genomic Research: A Real-Life Deployment and Vision [2.7968600664591983]
This paper presents a privacy-preserving framework for genomic research, developed in collaboration with Lynx.MD.
The framework addresses critical cybersecurity and privacy challenges, enabling the privacy-preserving sharing and analysis of genomic data.
Implementing the framework within Lynx.MD involves encoding genomic data into binary formats and applying noise through controlled perturbation techniques.
arXiv Detail & Related papers (2024-07-12T05:43:13Z) - Generative AI for Secure and Privacy-Preserving Mobile Crowdsensing [74.58071278710896]
generative AI has attracted much attention from both academic and industrial fields.
Secure and privacy-preserving mobile crowdsensing (SPPMCS) has been widely applied in data collection/ acquirement.
arXiv Detail & Related papers (2024-05-17T04:00:58Z) - A Unified View of Differentially Private Deep Generative Modeling [60.72161965018005]
Data with privacy concerns comes with stringent regulations that frequently prohibited data access and data sharing.
Overcoming these obstacles is key for technological progress in many real-world application scenarios that involve privacy sensitive data.
Differentially private (DP) data publishing provides a compelling solution, where only a sanitized form of the data is publicly released.
arXiv Detail & Related papers (2023-09-27T14:38:16Z) - Blockchain-empowered Federated Learning for Healthcare Metaverses:
User-centric Incentive Mechanism with Optimal Data Freshness [66.3982155172418]
We first design a user-centric privacy-preserving framework based on decentralized Federated Learning (FL) for healthcare metaverses.
We then utilize Age of Information (AoI) as an effective data-freshness metric and propose an AoI-based contract theory model under Prospect Theory (PT) to motivate sensing data sharing.
arXiv Detail & Related papers (2023-07-29T12:54:03Z) - Semantic Information Marketing in The Metaverse: A Learning-Based
Contract Theory Framework [68.8725783112254]
We address the problem of designing incentive mechanisms by a virtual service provider (VSP) to hire sensing IoT devices to sell their sensing data.
Due to the limited bandwidth, we propose to use semantic extraction algorithms to reduce the delivered data by the sensing IoT devices.
We propose a novel iterative contract design and use a new variant of multi-agent reinforcement learning (MARL) to solve the modelled multi-dimensional contract problem.
arXiv Detail & Related papers (2023-02-22T15:52:37Z) - HBFL: A Hierarchical Blockchain-based Federated Learning Framework for a
Collaborative IoT Intrusion Detection [0.0]
We propose a hierarchical blockchain-based federated learning framework to enable secure and privacy-preserved collaborative IoT intrusion detection.
The proposed ML-based intrusion detection framework follows a hierarchical federated learning architecture to ensure the privacy of the learning process and organisational data.
The outcome is a securely designed ML-based intrusion detection system capable of detecting a wide range of malicious activities while preserving data privacy.
arXiv Detail & Related papers (2022-04-08T19:06:16Z) - Reinforcement Learning on Encrypted Data [58.39270571778521]
We present a preliminary, experimental study of how a DQN agent trained on encrypted states performs in environments with discrete and continuous state spaces.
Our results highlight that the agent is still capable of learning in small state spaces even in presence of non-deterministic encryption, but performance collapses in more complex environments.
arXiv Detail & Related papers (2021-09-16T21:59:37Z) - BUNET: Blind Medical Image Segmentation Based on Secure UNET [24.374253627122467]
We propose blind UNET (BUNET), a secure protocol that implements privacy-preserving medical image segmentation based on the UNET architecture.
In BUNET, we efficiently utilize cryptographic primitives such as homomorphic encryption and garbled circuits (GC) to design a complete secure protocol for the UNET neural architecture.
We show that we can achieve up to 14x inference time reduction compared to the-state-of-the-art secure inference technique on a baseline architecture with negligible accuracy degradation.
arXiv Detail & Related papers (2020-07-14T07:05:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.