Harmonic oscillator coherent states from the orbit theory standpoint
- URL: http://arxiv.org/abs/2211.11029v1
- Date: Sun, 20 Nov 2022 17:15:02 GMT
- Title: Harmonic oscillator coherent states from the orbit theory standpoint
- Authors: A. I. Breev and A. V. Shapovalov
- Abstract summary: We show that analogs of coherent states constructed by the noncommutative integration can be expressed in terms of the solution of a system of differential equations on the Lie group.
The solutions constructed are directly related to irreducible representation of the Lie algebra on the Hilbert space functions on the Lagrangian submanifold to the orbit of the coadjoint representation.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We study the known coherent states of a quantum harmonic oscillator from the
standpoint of the original developed noncommutative integration method for
linear partial differential equations. The application of the method is based
on the symmetry properties of the Schr\"odinger equation and on the orbit
geometry of the coadjoint representation of Lie groups. We have shown that
analogs of coherent states constructed by the noncommutative integration can be
expressed in terms of the solution of a system of differential equations on the
Lie group of the oscillatory Lie algebra. The solutions constructed are
directly related to irreducible representation of the Lie algebra on the
Hilbert space functions on the Lagrangian submanifold to the orbit of the
coadjoint representation.
Related papers
- Quantum Random Walks and Quantum Oscillator in an Infinite-Dimensional Phase Space [45.9982965995401]
We consider quantum random walks in an infinite-dimensional phase space constructed using Weyl representation of the coordinate and momentum operators.
We find conditions for their strong continuity and establish properties of their generators.
arXiv Detail & Related papers (2024-06-15T17:39:32Z) - Radiative transport in a periodic structure with band crossings [52.24960876753079]
We derive the semi-classical model for the Schr"odinger equation in arbitrary spatial dimensions.
We consider both deterministic and random scenarios.
As a specific application, we deduce the effective dynamics of a wave packet in graphene with randomness.
arXiv Detail & Related papers (2024-02-09T23:34:32Z) - Calculation of the wave functions of a quantum asymmetric top using the
noncommutative integration method [0.0]
We obtain a complete set of solutions to the Schrodinger equation for a quantum asymmetric top in Euler angles.
The spectrum of an asymmetric top is obtained from the condition that the solutions are in with respect to a special irreducible $lambda$-representation of the rotation group.
arXiv Detail & Related papers (2022-11-27T12:38:22Z) - Entanglement in phase-space distribution for an anisotropic harmonic
oscillator in noncommutative space [0.0]
We show that the co-ordinates are entangled only with the conjugate momentum corresponding to other co-ordinates.
The identification of the entangled degrees of freedom is possible by studying the Wigner quasiprobability distribution in phase-space.
arXiv Detail & Related papers (2022-06-18T08:25:54Z) - Exact solutions of interacting dissipative systems via weak symmetries [77.34726150561087]
We analytically diagonalize the Liouvillian of a class Markovian dissipative systems with arbitrary strong interactions or nonlinearity.
This enables an exact description of the full dynamics and dissipative spectrum.
Our method is applicable to a variety of other systems, and could provide a powerful new tool for the study of complex driven-dissipative quantum systems.
arXiv Detail & Related papers (2021-09-27T17:45:42Z) - Hilbert Space Fragmentation and Commutant Algebras [0.0]
We study the phenomenon of Hilbert space fragmentation in isolated Hamiltonian and Floquet quantum systems.
We use the language of commutant algebras, the algebra of all operators that commute with each term of the Hamiltonian or each gate of the circuit.
arXiv Detail & Related papers (2021-08-23T18:00:01Z) - Quantum Relativity of Subsystems [58.720142291102135]
We show that different reference frame perspectives induce different sets of subsystem observable algebras, which leads to a gauge-invariant, frame-dependent notion of subsystems and entanglement.
Such a QRF perspective does not inherit the distinction between subsystems in terms of the corresponding tensor factorizability of the kinematical Hilbert space and observable algebra.
Since the condition for this to occur is contingent on the choice of QRF, the notion of subsystem locality is frame-dependent.
arXiv Detail & Related papers (2021-03-01T19:00:01Z) - The Connection between Discrete- and Continuous-Time Descriptions of
Gaussian Continuous Processes [60.35125735474386]
We show that discretizations yielding consistent estimators have the property of invariance under coarse-graining'
This result explains why combining differencing schemes for derivatives reconstruction and local-in-time inference approaches does not work for time series analysis of second or higher order differential equations.
arXiv Detail & Related papers (2021-01-16T17:11:02Z) - Group Theoretical Approach to Pseudo-Hermitian Quantum Mechanics with
Lorentz Covariance and $c \rightarrow \infty $ Limit [0.0]
The basic representation is identified as a coherent state representation, essentially an irreducible component of the regular representation.
The key feature of the formulation is that it is not unitary but pseudo-unitary, exactly in the same sense as the Minkowski spacetime representation.
Explicit wavefunction description is given without any restriction of the variable domains, yet with a finite integral inner product.
arXiv Detail & Related papers (2020-09-12T23:48:52Z) - Operator-algebraic renormalization and wavelets [62.997667081978825]
We construct the continuum free field as the scaling limit of Hamiltonian lattice systems using wavelet theory.
A renormalization group step is determined by the scaling equation identifying lattice observables with the continuum field smeared by compactly supported wavelets.
arXiv Detail & Related papers (2020-02-04T18:04:51Z) - Covariant Quantum Mechanics and Quantum Spacetime [0.0]
The basic representation is identified as a coherent state representation, essentially an irreducible component of the regular representation.
Explicit wavefunction description is given without any restriction of the variable domains, yet with a finite integral inner product.
arXiv Detail & Related papers (2020-02-04T08:55:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.