DynIBaR: Neural Dynamic Image-Based Rendering
- URL: http://arxiv.org/abs/2211.11082v3
- Date: Mon, 24 Apr 2023 16:42:08 GMT
- Title: DynIBaR: Neural Dynamic Image-Based Rendering
- Authors: Zhengqi Li, Qianqian Wang, Forrester Cole, Richard Tucker, Noah
Snavely
- Abstract summary: We address the problem of synthesizing novel views from a monocular video depicting a complex dynamic scene.
We adopt a volumetric image-based rendering framework that synthesizes new viewpoints by aggregating features from nearby views.
We demonstrate significant improvements over state-of-the-art methods on dynamic scene datasets.
- Score: 79.44655794967741
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We address the problem of synthesizing novel views from a monocular video
depicting a complex dynamic scene. State-of-the-art methods based on temporally
varying Neural Radiance Fields (aka dynamic NeRFs) have shown impressive
results on this task. However, for long videos with complex object motions and
uncontrolled camera trajectories, these methods can produce blurry or
inaccurate renderings, hampering their use in real-world applications. Instead
of encoding the entire dynamic scene within the weights of MLPs, we present a
new approach that addresses these limitations by adopting a volumetric
image-based rendering framework that synthesizes new viewpoints by aggregating
features from nearby views in a scene-motion-aware manner. Our system retains
the advantages of prior methods in its ability to model complex scenes and
view-dependent effects, but also enables synthesizing photo-realistic novel
views from long videos featuring complex scene dynamics with unconstrained
camera trajectories. We demonstrate significant improvements over
state-of-the-art methods on dynamic scene datasets, and also apply our approach
to in-the-wild videos with challenging camera and object motion, where prior
methods fail to produce high-quality renderings. Our project webpage is at
dynibar.github.io.
Related papers
- D-NPC: Dynamic Neural Point Clouds for Non-Rigid View Synthesis from Monocular Video [53.83936023443193]
This paper contributes to the field by introducing a new synthesis method for dynamic novel view from monocular video, such as smartphone captures.
Our approach represents the as a $textitdynamic neural point cloud$, an implicit time-conditioned point cloud that encodes local geometry and appearance in separate hash-encoded neural feature grids.
arXiv Detail & Related papers (2024-06-14T14:35:44Z) - Modeling Ambient Scene Dynamics for Free-view Synthesis [31.233859111566613]
We introduce a novel method for dynamic free-view synthesis of an ambient scenes from a monocular capture.
Our method builds upon the recent advancements in 3D Gaussian Splatting (3DGS) that can faithfully reconstruct complex static scenes.
arXiv Detail & Related papers (2024-06-13T17:59:11Z) - DyBluRF: Dynamic Neural Radiance Fields from Blurry Monocular Video [18.424138608823267]
We propose DyBluRF, a dynamic radiance field approach that synthesizes sharp novel views from a monocular video affected by motion blur.
To account for motion blur in input images, we simultaneously capture the camera trajectory and object Discrete Cosine Transform (DCT) trajectories within the scene.
arXiv Detail & Related papers (2024-03-15T08:48:37Z) - CTNeRF: Cross-Time Transformer for Dynamic Neural Radiance Field from Monocular Video [25.551944406980297]
We propose a novel approach to generate high-quality novel views from monocular videos of complex and dynamic scenes.
We introduce a module that operates in both the time and frequency domains to aggregate the features of object motion.
Our experiments demonstrate significant improvements over state-of-the-art methods on dynamic scene datasets.
arXiv Detail & Related papers (2024-01-10T00:40:05Z) - Dance In the Wild: Monocular Human Animation with Neural Dynamic
Appearance Synthesis [56.550999933048075]
We propose a video based synthesis method that tackles challenges and demonstrates high quality results for in-the-wild videos.
We introduce a novel motion signature that is used to modulate the generator weights to capture dynamic appearance changes.
We evaluate our method on a set of challenging videos and show that our approach achieves state-of-the art performance both qualitatively and quantitatively.
arXiv Detail & Related papers (2021-11-10T20:18:57Z) - NeuralDiff: Segmenting 3D objects that move in egocentric videos [92.95176458079047]
We study the problem of decomposing the observed 3D scene into a static background and a dynamic foreground.
This task is reminiscent of the classic background subtraction problem, but is significantly harder because all parts of the scene, static and dynamic, generate a large apparent motion.
In particular, we consider egocentric videos and further separate the dynamic component into objects and the actor that observes and moves them.
arXiv Detail & Related papers (2021-10-19T12:51:35Z) - Editable Free-viewpoint Video Using a Layered Neural Representation [35.44420164057911]
We propose the first approach for editable free-viewpoint video generation for large-scale dynamic scenes using only sparse 16 cameras.
The core of our approach is a new layered neural representation, where each dynamic entity including the environment itself is formulated into a space-time coherent neural layered radiance representation called ST-NeRF.
Experiments demonstrate the effectiveness of our approach to achieve high-quality, photo-realistic, and editable free-viewpoint video generation for dynamic scenes.
arXiv Detail & Related papers (2021-04-30T06:50:45Z) - Non-Rigid Neural Radiance Fields: Reconstruction and Novel View
Synthesis of a Dynamic Scene From Monocular Video [76.19076002661157]
Non-Rigid Neural Radiance Fields (NR-NeRF) is a reconstruction and novel view synthesis approach for general non-rigid dynamic scenes.
We show that even a single consumer-grade camera is sufficient to synthesize sophisticated renderings of a dynamic scene from novel virtual camera views.
arXiv Detail & Related papers (2020-12-22T18:46:12Z) - Neural Scene Flow Fields for Space-Time View Synthesis of Dynamic Scenes [70.76742458931935]
We introduce a new representation that models the dynamic scene as a time-variant continuous function of appearance, geometry, and 3D scene motion.
Our representation is optimized through a neural network to fit the observed input views.
We show that our representation can be used for complex dynamic scenes, including thin structures, view-dependent effects, and natural degrees of motion.
arXiv Detail & Related papers (2020-11-26T01:23:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.