The Past Does Matter: Correlation of Subsequent States in Trajectory
Predictions of Gaussian Process Models
- URL: http://arxiv.org/abs/2211.11103v2
- Date: Sat, 13 May 2023 19:58:43 GMT
- Title: The Past Does Matter: Correlation of Subsequent States in Trajectory
Predictions of Gaussian Process Models
- Authors: Steffen Ridderbusch, Sina Ober-Bl\"obaum, Paul Goulart
- Abstract summary: We consider approximations of the model's output and trajectory distribution.
We show that previous work on uncertainty propagation incorrectly included an independence assumption between subsequent states of the predicted trajectories.
- Score: 0.7734726150561089
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Computing the distribution of trajectories from a Gaussian Process model of a
dynamical system is an important challenge in utilizing such models. Motivated
by the computational cost of sampling-based approaches, we consider
approximations of the model's output and trajectory distribution. We show that
previous work on uncertainty propagation, focussed on discrete state-space
models, incorrectly included an independence assumption between subsequent
states of the predicted trajectories. Expanding these ideas to continuous
ordinary differential equation models, we illustrate the implications of this
assumption and propose a novel piecewise linear approximation of Gaussian
Processes to mitigate them.
Related papers
- Learning Latent Space Dynamics with Model-Form Uncertainties: A Stochastic Reduced-Order Modeling Approach [0.0]
This paper presents a probabilistic approach to represent and quantify model-form uncertainties in the reduced-order modeling of complex systems.
The proposed method captures these uncertainties by expanding the approximation space through the randomization of the projection matrix.
The efficacy of the approach is assessed on canonical problems in fluid mechanics by identifying and quantifying the impact of model-form uncertainties on the inferred operators.
arXiv Detail & Related papers (2024-08-30T19:25:28Z) - von Mises Quasi-Processes for Bayesian Circular Regression [57.88921637944379]
We explore a family of expressive and interpretable distributions over circle-valued random functions.
The resulting probability model has connections with continuous spin models in statistical physics.
For posterior inference, we introduce a new Stratonovich-like augmentation that lends itself to fast Markov Chain Monte Carlo sampling.
arXiv Detail & Related papers (2024-06-19T01:57:21Z) - On the Trajectory Regularity of ODE-based Diffusion Sampling [79.17334230868693]
Diffusion-based generative models use differential equations to establish a smooth connection between a complex data distribution and a tractable prior distribution.
In this paper, we identify several intriguing trajectory properties in the ODE-based sampling process of diffusion models.
arXiv Detail & Related papers (2024-05-18T15:59:41Z) - Fusion of Gaussian Processes Predictions with Monte Carlo Sampling [61.31380086717422]
In science and engineering, we often work with models designed for accurate prediction of variables of interest.
Recognizing that these models are approximations of reality, it becomes desirable to apply multiple models to the same data and integrate their outcomes.
arXiv Detail & Related papers (2024-03-03T04:21:21Z) - Towards Theoretical Understandings of Self-Consuming Generative Models [56.84592466204185]
This paper tackles the emerging challenge of training generative models within a self-consuming loop.
We construct a theoretical framework to rigorously evaluate how this training procedure impacts the data distributions learned by future models.
We present results for kernel density estimation, delivering nuanced insights such as the impact of mixed data training on error propagation.
arXiv Detail & Related papers (2024-02-19T02:08:09Z) - Data-driven Modeling and Inference for Bayesian Gaussian Process ODEs
via Double Normalizing Flows [28.62579476863723]
We introduce normalizing flows to re parameterize the ODE vector field, resulting in a data-driven prior distribution.
We also apply normalizing flows to the posterior inference of GP ODEs to resolve the issue of strong mean-field assumptions.
We validate the effectiveness of our approach on simulated dynamical systems and real-world human motion data.
arXiv Detail & Related papers (2023-09-17T09:28:47Z) - A Geometric Perspective on Diffusion Models [57.27857591493788]
We inspect the ODE-based sampling of a popular variance-exploding SDE.
We establish a theoretical relationship between the optimal ODE-based sampling and the classic mean-shift (mode-seeking) algorithm.
arXiv Detail & Related papers (2023-05-31T15:33:16Z) - Distributed Bayesian Learning of Dynamic States [65.7870637855531]
The proposed algorithm is a distributed Bayesian filtering task for finite-state hidden Markov models.
It can be used for sequential state estimation, as well as for modeling opinion formation over social networks under dynamic environments.
arXiv Detail & Related papers (2022-12-05T19:40:17Z) - Fast Estimation of Bayesian State Space Models Using Amortized
Simulation-Based Inference [0.0]
This paper presents a fast algorithm for estimating hidden states of Bayesian state space models.
After pretraining, finding the posterior distribution for any dataset takes from hundredths to tenths of a second.
arXiv Detail & Related papers (2022-10-13T16:37:05Z) - Variational Inference for Continuous-Time Switching Dynamical Systems [29.984955043675157]
We present a model based on an Markov jump process modulating a subordinated diffusion process.
We develop a new continuous-time variational inference algorithm.
We extensively evaluate our algorithm under the model assumption and for real-world examples.
arXiv Detail & Related papers (2021-09-29T15:19:51Z) - Nonlinear Hawkes Process with Gaussian Process Self Effects [3.441953136999684]
Hawkes processes are used to model time--continuous point processes with history dependence.
Here we propose an extended model where the self--effects are of both excitatory and inhibitory type.
We continue the line of work of Bayesian inference for Hawkes processes, and our approach dispenses with the necessity of estimating a branching structure for the posterior.
arXiv Detail & Related papers (2021-05-20T09:20:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.