CGoDial: A Large-Scale Benchmark for Chinese Goal-oriented Dialog
Evaluation
- URL: http://arxiv.org/abs/2211.11617v1
- Date: Mon, 21 Nov 2022 16:21:41 GMT
- Title: CGoDial: A Large-Scale Benchmark for Chinese Goal-oriented Dialog
Evaluation
- Authors: Yinpei Dai, Wanwei He, Bowen Li, Yuchuan Wu, Zheng Cao, Zhongqi An,
Jian Sun, Yongbin Li
- Abstract summary: CGoDial is a new challenging and comprehensive Chinese benchmark for Goal-oriented Dialog evaluation.
It contains 96,763 dialog sessions and 574,949 dialog turns totally, covering three datasets with different knowledge sources.
To bridge the gap between academic benchmarks and spoken dialog scenarios, we either collect data from real conversations or add spoken features to existing datasets via crowd-sourcing.
- Score: 75.60156479374416
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Practical dialog systems need to deal with various knowledge sources, noisy
user expressions, and the shortage of annotated data. To better solve the above
problems, we propose CGoDial, new challenging and comprehensive Chinese
benchmark for multi-domain Goal-oriented Dialog evaluation. It contains 96,763
dialog sessions and 574,949 dialog turns totally, covering three datasets with
different knowledge sources: 1) a slot-based dialog (SBD) dataset with
table-formed knowledge, 2) a flow-based dialog (FBD) dataset with tree-formed
knowledge, and a retrieval-based dialog (RBD) dataset with candidate-formed
knowledge. To bridge the gap between academic benchmarks and spoken dialog
scenarios, we either collect data from real conversations or add spoken
features to existing datasets via crowd-sourcing. The proposed experimental
settings include the combinations of training with either the entire training
set or a few-shot training set, and testing with either the standard test set
or a hard test subset, which can assess model capabilities in terms of general
prediction, fast adaptability and reliable robustness.
Related papers
- DialogStudio: Towards Richest and Most Diverse Unified Dataset
Collection for Conversational AI [92.29874802394167]
DialogStudio is the largest and most diverse collection of dialogue datasets.
Our collection encompasses data from open-domain dialogues, task-oriented dialogues, natural language understanding, conversational recommendation, dialogue summarization, and knowledge-grounded dialogues.
arXiv Detail & Related papers (2023-07-19T17:57:53Z) - Knowledge-Retrieval Task-Oriented Dialog Systems with Semi-Supervision [22.249113574918034]
Most existing task-oriented dialog (TOD) systems track dialog states in terms of slots and values and use them to query a database to get relevant knowledge to generate responses.
In real-life applications, user utterances are noisier, and thus it is more difficult to accurately track dialog states and correctly secure relevant knowledge.
Inspired by such progress, we propose a retrieval-based method to enhance knowledge selection in TOD systems, which outperforms the traditional database query method for real-life dialogs.
arXiv Detail & Related papers (2023-05-22T16:29:20Z) - SPACE-2: Tree-Structured Semi-Supervised Contrastive Pre-training for
Task-Oriented Dialog Understanding [68.94808536012371]
We propose a tree-structured pre-trained conversation model, which learns dialog representations from limited labeled dialogs and large-scale unlabeled dialog corpora.
Our method can achieve new state-of-the-art results on the DialoGLUE benchmark consisting of seven datasets and four popular dialog understanding tasks.
arXiv Detail & Related papers (2022-09-14T13:42:50Z) - HybriDialogue: An Information-Seeking Dialogue Dataset Grounded on
Tabular and Textual Data [87.67278915655712]
We present a new dialogue dataset, HybriDialogue, which consists of crowdsourced natural conversations grounded on both Wikipedia text and tables.
The conversations are created through the decomposition of complex multihop questions into simple, realistic multiturn dialogue interactions.
arXiv Detail & Related papers (2022-04-28T00:52:16Z) - Cross-Lingual Dialogue Dataset Creation via Outline-Based Generation [70.81596088969378]
Cross-lingual Outline-based Dialogue dataset (termed COD) enables natural language understanding.
COD enables dialogue state tracking, and end-to-end dialogue modelling and evaluation in 4 diverse languages.
arXiv Detail & Related papers (2022-01-31T18:11:21Z) - Dialog Simulation with Realistic Variations for Training Goal-Oriented
Conversational Systems [14.206866126142002]
Goal-oriented dialog systems enable users to complete specific goals like requesting information about a movie or booking a ticket.
We propose an approach for automatically creating a large corpus of annotated dialogs from a few thoroughly annotated sample dialogs and the dialog schema.
We achieve 18? 50% relative accuracy on a held-out test set compared to a baseline dialog generation approach.
arXiv Detail & Related papers (2020-11-16T19:39:15Z) - Rethinking Dialogue State Tracking with Reasoning [76.0991910623001]
This paper proposes to track dialogue states gradually with reasoning over dialogue turns with the help of the back-end data.
Empirical results demonstrate that our method significantly outperforms the state-of-the-art methods by 38.6% in terms of joint belief accuracy for MultiWOZ 2.1.
arXiv Detail & Related papers (2020-05-27T02:05:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.