Hierarchical Graph Structures for Congestion and ETA Prediction
- URL: http://arxiv.org/abs/2211.11762v1
- Date: Mon, 21 Nov 2022 15:35:27 GMT
- Title: Hierarchical Graph Structures for Congestion and ETA Prediction
- Authors: Florian Gr\"otschla and Jo\"el Mathys
- Abstract summary: Traffic4cast is an annual competition to predict temporal traffic based on real world data.
We propose an approach using Neural Networks that directly works on the road graph topology which was extracted from OpenStreetMap data.
Our architecture can incorporate a hierarchical graph representation to improve the information flow between key intersections of the graph and the shortest paths connecting them.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Traffic4cast is an annual competition to predict spatio temporal traffic
based on real world data. We propose an approach using Graph Neural Networks
that directly works on the road graph topology which was extracted from
OpenStreetMap data. Our architecture can incorporate a hierarchical graph
representation to improve the information flow between key intersections of the
graph and the shortest paths connecting them. Furthermore, we investigate how
the road graph can be compacted to ease the flow of information and make use of
a multi-task approach to predict congestion classes and ETA simultaneously. Our
code and models are released here:
https://github.com/floriangroetschla/NeurIPS2022-traffic4cast
Related papers
- Graph Construction with Flexible Nodes for Traffic Demand Prediction [44.1996864038085]
This paper introduces a novel graph construction method tailored to free-floating traffic mode.
We propose a novel density-based clustering algorithm (HDPC-L) to determine the flexible positioning of nodes in the graph.
Comprehensive experiments on two real-world datasets, the Shenzhen bike-sharing dataset and the Haikou ride-hailing dataset, show that the method significantly improves the performance of the model.
arXiv Detail & Related papers (2024-03-01T04:38:51Z) - STG4Traffic: A Survey and Benchmark of Spatial-Temporal Graph Neural Networks for Traffic Prediction [9.467593700532401]
This paper provides a systematic review of graph learning strategies and commonly used graph convolution algorithms.
We then conduct a comprehensive analysis of the strengths and weaknesses of recently proposed spatial-temporal graph network models.
We build a study called STG4Traffic using the deep learning framework PyTorch to establish a standardized and scalable benchmark on two types of traffic datasets.
arXiv Detail & Related papers (2023-07-02T06:56:52Z) - Sparsity exploitation via discovering graphical models in multi-variate
time-series forecasting [1.2762298148425795]
We propose a decoupled training method, which includes a graph generating module and a GNNs forecasting module.
First, we use Graphical Lasso (or GraphLASSO) to directly exploit the sparsity pattern from data to build graph structures.
Second, we fit these graph structures and the input data into a Graph Convolutional Recurrent Network (GCRN) to train a forecasting model.
arXiv Detail & Related papers (2023-06-29T16:48:00Z) - You Only Transfer What You Share: Intersection-Induced Graph Transfer
Learning for Link Prediction [79.15394378571132]
We investigate a previously overlooked phenomenon: in many cases, a densely connected, complementary graph can be found for the original graph.
The denser graph may share nodes with the original graph, which offers a natural bridge for transferring selective, meaningful knowledge.
We identify this setting as Graph Intersection-induced Transfer Learning (GITL), which is motivated by practical applications in e-commerce or academic co-authorship predictions.
arXiv Detail & Related papers (2023-02-27T22:56:06Z) - Optimal Propagation for Graph Neural Networks [51.08426265813481]
We propose a bi-level optimization approach for learning the optimal graph structure.
We also explore a low-rank approximation model for further reducing the time complexity.
arXiv Detail & Related papers (2022-05-06T03:37:00Z) - Neural Graph Matching for Pre-training Graph Neural Networks [72.32801428070749]
Graph neural networks (GNNs) have been shown powerful capacity at modeling structural data.
We present a novel Graph Matching based GNN Pre-Training framework, called GMPT.
The proposed method can be applied to fully self-supervised pre-training and coarse-grained supervised pre-training.
arXiv Detail & Related papers (2022-03-03T09:53:53Z) - Unboxing the graph: Neural Relational Inference for Mobility Prediction [15.4049962498675]
Graph Networks (GNNs) have been widely applied on non-euclidean spatial data.
In this paper, we use Neural Inference, a dynamically learn the optimal graph model.
arXiv Detail & Related papers (2022-01-25T13:26:35Z) - Bayesian Graph Convolutional Network for Traffic Prediction [23.30484840210517]
We propose a Bayesian Graph Convolutional Network (BGCN) framework to alleviate these issues.
Under this framework, the graph structure is viewed as a random realization from a parametric generative model.
We verify the effectiveness of our method on five real-world datasets, and the experimental results demonstrate that BGCN attains superior performance compared with state-of-the-art methods.
arXiv Detail & Related papers (2021-04-01T14:19:37Z) - Road Scene Graph: A Semantic Graph-Based Scene Representation Dataset
for Intelligent Vehicles [72.04891523115535]
We propose road scene graph,a special scene-graph for intelligent vehicles.
It provides not only object proposals but also their pair-wise relationships.
By organizing them in a topological graph, these data are explainable, fully-connected, and could be easily processed by GCNs.
arXiv Detail & Related papers (2020-11-27T07:33:11Z) - Line Graph Neural Networks for Link Prediction [71.00689542259052]
We consider the graph link prediction task, which is a classic graph analytical problem with many real-world applications.
In this formalism, a link prediction problem is converted to a graph classification task.
We propose to seek a radically different and novel path by making use of the line graphs in graph theory.
In particular, each node in a line graph corresponds to a unique edge in the original graph. Therefore, link prediction problems in the original graph can be equivalently solved as a node classification problem in its corresponding line graph, instead of a graph classification task.
arXiv Detail & Related papers (2020-10-20T05:54:31Z) - Graph Pooling with Node Proximity for Hierarchical Representation
Learning [80.62181998314547]
We propose a novel graph pooling strategy that leverages node proximity to improve the hierarchical representation learning of graph data with their multi-hop topology.
Results show that the proposed graph pooling strategy is able to achieve state-of-the-art performance on a collection of public graph classification benchmark datasets.
arXiv Detail & Related papers (2020-06-19T13:09:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.