DS-GPS : A Deep Statistical Graph Poisson Solver (for faster CFD
simulations)
- URL: http://arxiv.org/abs/2211.11763v1
- Date: Mon, 21 Nov 2022 16:16:10 GMT
- Title: DS-GPS : A Deep Statistical Graph Poisson Solver (for faster CFD
simulations)
- Authors: Matthieu Nastorg (CNRS, Inria, LISN, IFPEN), Marc Schoenauer (CNRS,
Inria, LISN), Guillaume Charpiat (CNRS, Inria, LISN), Thibault Faney (IFPEN),
Jean-Marc Gratien (IFPEN), Michele-Alessandro Bucci (CNRS, Inria, LISN)
- Abstract summary: We develop a model able to process unstructured grids with the advantage of enforcing boundary conditions by design.
By directly minimizing the residual of the Poisson equation, the model attempts to learn the physics of the problem without the need for exact solutions.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper proposes a novel Machine Learning-based approach to solve a
Poisson problem with mixed boundary conditions. Leveraging Graph Neural
Networks, we develop a model able to process unstructured grids with the
advantage of enforcing boundary conditions by design. By directly minimizing
the residual of the Poisson equation, the model attempts to learn the physics
of the problem without the need for exact solutions, in contrast to most
previous data-driven processes where the distance with the available solutions
is minimized.
Related papers
- FEM-based Neural Networks for Solving Incompressible Fluid Flows and Related Inverse Problems [41.94295877935867]
numerical simulation and optimization of technical systems described by partial differential equations is expensive.
A comparatively new approach in this context is to combine the good approximation properties of neural networks with the classical finite element method.
In this paper, we extend this approach to saddle-point and non-linear fluid dynamics problems, respectively.
arXiv Detail & Related papers (2024-09-06T07:17:01Z) - Dynamical Measure Transport and Neural PDE Solvers for Sampling [77.38204731939273]
We tackle the task of sampling from a probability density as transporting a tractable density function to the target.
We employ physics-informed neural networks (PINNs) to approximate the respective partial differential equations (PDEs) solutions.
PINNs allow for simulation- and discretization-free optimization and can be trained very efficiently.
arXiv Detail & Related papers (2024-07-10T17:39:50Z) - Solving Poisson Equations using Neural Walk-on-Spheres [80.1675792181381]
We propose Neural Walk-on-Spheres (NWoS), a novel neural PDE solver for the efficient solution of high-dimensional Poisson equations.
We demonstrate the superiority of NWoS in accuracy, speed, and computational costs.
arXiv Detail & Related papers (2024-06-05T17:59:22Z) - A Stable and Scalable Method for Solving Initial Value PDEs with Neural
Networks [52.5899851000193]
We develop an ODE based IVP solver which prevents the network from getting ill-conditioned and runs in time linear in the number of parameters.
We show that current methods based on this approach suffer from two key issues.
First, following the ODE produces an uncontrolled growth in the conditioning of the problem, ultimately leading to unacceptably large numerical errors.
arXiv Detail & Related papers (2023-04-28T17:28:18Z) - NeuralStagger: Accelerating Physics-constrained Neural PDE Solver with
Spatial-temporal Decomposition [67.46012350241969]
This paper proposes a general acceleration methodology called NeuralStagger.
It decomposing the original learning tasks into several coarser-resolution subtasks.
We demonstrate the successful application of NeuralStagger on 2D and 3D fluid dynamics simulations.
arXiv Detail & Related papers (2023-02-20T19:36:52Z) - Random Grid Neural Processes for Parametric Partial Differential
Equations [5.244037702157957]
We introduce a new class of spatially probabilistic physics and data informed deep latent models for PDEs.
We solve forward and inverse problems for parametric PDEs in a way that leads to the construction of Gaussian process models of solution fields.
We show how to incorporate noisy data in a principled manner into our physics informed model to improve predictions for problems where data may be available.
arXiv Detail & Related papers (2023-01-26T11:30:56Z) - MAgNet: Mesh Agnostic Neural PDE Solver [68.8204255655161]
Climate predictions require fine-temporal resolutions to resolve all turbulent scales in the fluid simulations.
Current numerical model solveers PDEs on grids that are too coarse (3km to 200km on each side)
We design a novel architecture that predicts the spatially continuous solution of a PDE given a spatial position query.
arXiv Detail & Related papers (2022-10-11T14:52:20Z) - A deep learning approach to solve forward differential problems on
graphs [6.756351172952362]
We propose a novel deep learning approach to solve one-dimensional non-linear elliptic, parabolic, and hyperbolic problems on graphs.
A system of physics-informed neural network (PINN) models is used to solve the differential equations.
arXiv Detail & Related papers (2022-10-07T16:06:42Z) - Stacked Generative Machine Learning Models for Fast Approximations of
Steady-State Navier-Stokes Equations [1.4150517264592128]
We develop a weakly-supervised approach to solve the steady-state Navier-Stokes equations under various boundary conditions.
We achieve state-of-the-art results without any labeled simulation data.
We train stacked models of increasing complexity generating the numerical solutions for N-S equations.
arXiv Detail & Related papers (2021-12-13T05:08:55Z) - Optimal Transport Based Refinement of Physics-Informed Neural Networks [0.0]
We propose a refinement strategy to the well-known Physics-Informed Neural Networks (PINNs) for solving partial differential equations (PDEs) based on the concept of Optimal Transport (OT)
PINNs solvers have been found to suffer from a host of issues: spectral bias in fully-connected pathologies, unstable gradient, and difficulties with convergence and accuracy.
We present a novel training strategy for solving the Fokker-Planck-Kolmogorov Equation (FPKE) using OT-based sampling to supplement the existing PINNs framework.
arXiv Detail & Related papers (2021-05-26T02:51:20Z) - A Near-Optimal Gradient Flow for Learning Neural Energy-Based Models [93.24030378630175]
We propose a novel numerical scheme to optimize the gradient flows for learning energy-based models (EBMs)
We derive a second-order Wasserstein gradient flow of the global relative entropy from Fokker-Planck equation.
Compared with existing schemes, Wasserstein gradient flow is a smoother and near-optimal numerical scheme to approximate real data densities.
arXiv Detail & Related papers (2019-10-31T02:26:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.