Genetic Algorithm for Program Synthesis
- URL: http://arxiv.org/abs/2211.11937v1
- Date: Tue, 22 Nov 2022 01:16:13 GMT
- Title: Genetic Algorithm for Program Synthesis
- Authors: Yutaka Nagashima
- Abstract summary: We improve the search strategy of a deductive program synthesis tool, SuSLik, using evolutionary computation.
Our cross-validation shows that the improvement brought by evolutionary computation generalises to unforeseen problems.
- Score: 6.85316573653194
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: A deductive program synthesis tool takes a specification as input and derives
a program that satisfies the specification. The drawback of this approach is
that search spaces for such correct programs tend to be enormous, making it
difficult to derive correct programs within a realistic timeout. To speed up
such program derivation, we improve the search strategy of a deductive program
synthesis tool, SuSLik, using evolutionary computation. Our cross-validation
shows that the improvement brought by evolutionary computation generalises to
unforeseen problems.
Related papers
- Searching Latent Program Spaces [0.0]
We propose an algorithm for program induction that learns a distribution over latent programs in a continuous space, enabling efficient search and test-time adaptation.
We show that can generalize beyond its training distribution and adapt to unseen tasks by utilizing test-time adaptation mechanisms.
arXiv Detail & Related papers (2024-11-13T15:50:32Z) - Synthesizing Programs with Continuous Optimization [4.457604452495174]
We present a novel formulation of program synthesis as a continuous optimization problem.
We then propose a mapping scheme to convert the continuous formulation into actual programs.
arXiv Detail & Related papers (2022-11-02T02:12:10Z) - Iterative Genetic Improvement: Scaling Stochastic Program Synthesis [11.195558777385259]
Program synthesis aims to it automatically find programs from an underlying programming language that satisfy a given specification.
Existing program synthesis techniques do not meet this expectation very well, suffering from the scalability issue.
Here we propose a new framework for program synthesis, called iterative genetic improvement to overcome this problem.
arXiv Detail & Related papers (2022-02-26T02:00:35Z) - Searching for More Efficient Dynamic Programs [61.79535031840558]
We describe a set of program transformations, a simple metric for assessing the efficiency of a transformed program, and a search procedure to improve this metric.
We show that in practice, automated search can find substantial improvements to the initial program.
arXiv Detail & Related papers (2021-09-14T20:52:55Z) - Recent Developments in Program Synthesis with Evolutionary Algorithms [1.8047694351309207]
We identify the relevant evolutionary program synthesis approaches and provide an in-depth analysis of their performance.
The most influential approaches we identify are stack-based, grammar-guided, as well as linear genetic programming.
For future work, we encourage researchers not only to use a program's output for assessing the quality of a solution but also the way towards a solution.
arXiv Detail & Related papers (2021-08-27T11:38:27Z) - Latent Execution for Neural Program Synthesis Beyond Domain-Specific
Languages [97.58968222942173]
We take the first step to synthesize C programs from input-output examples.
In particular, we propose La Synth, which learns the latent representation to approximate the execution of partially generated programs.
We show that training on these synthesized programs further improves the prediction performance for both Karel and C program synthesis.
arXiv Detail & Related papers (2021-06-29T02:21:32Z) - Representing Partial Programs with Blended Abstract Semantics [62.20775388513027]
We introduce a technique for representing partially written programs in a program synthesis engine.
We learn an approximate execution model implemented as a modular neural network.
We show that these hybrid neuro-symbolic representations enable execution-guided synthesizers to use more powerful language constructs.
arXiv Detail & Related papers (2020-12-23T20:40:18Z) - Latent Programmer: Discrete Latent Codes for Program Synthesis [56.37993487589351]
In many sequence learning tasks, such as program synthesis and document summarization, a key problem is searching over a large space of possible output sequences.
We propose to learn representations of the outputs that are specifically meant for search: rich enough to specify the desired output but compact enough to make search more efficient.
We introduce the emphLatent Programmer, a program synthesis method that first predicts a discrete latent code from input/output examples, and then generates the program in the target language.
arXiv Detail & Related papers (2020-12-01T10:11:35Z) - Synthesize, Execute and Debug: Learning to Repair for Neural Program
Synthesis [81.54148730967394]
We propose SED, a neural program generation framework that incorporates synthesis, execution, and debug stages.
SED first produces initial programs using the neural program synthesizer component, then utilizes a neural program debugger to iteratively repair the generated programs.
On Karel, a challenging input-output program synthesis benchmark, SED reduces the error rate of the neural program synthesizer itself by a considerable margin, and outperforms the standard beam search for decoding.
arXiv Detail & Related papers (2020-07-16T04:15:47Z) - Creating Synthetic Datasets via Evolution for Neural Program Synthesis [77.34726150561087]
We show that some program synthesis approaches generalize poorly to data distributions different from that of the randomly generated examples.
We propose a new, adversarial approach to control the bias of synthetic data distributions and show that it outperforms current approaches.
arXiv Detail & Related papers (2020-03-23T18:34:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.