GlowGAN: Unsupervised Learning of HDR Images from LDR Images in the Wild
- URL: http://arxiv.org/abs/2211.12352v2
- Date: Wed, 23 Nov 2022 10:12:43 GMT
- Title: GlowGAN: Unsupervised Learning of HDR Images from LDR Images in the Wild
- Authors: Chao Wang, Ana Serrano, Xingang Pan, Bin Chen, Hans-Peter Seidel,
Christian Theobalt, Karol Myszkowski, Thomas Leimkuehler
- Abstract summary: We present the first method for learning a generative model of HDR images from in-the-wild LDR image collections in a fully unsupervised manner.
The key idea is to train a generative adversarial network (GAN) to generate HDR images which, when projected to LDR under various exposures, are indistinguishable from real LDR images.
Experiments show that our method GlowGAN can synthesize photorealistic HDR images in many challenging cases such as landscapes, lightning, or windows.
- Score: 74.52723408793648
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Most in-the-wild images are stored in Low Dynamic Range (LDR) form, serving
as a partial observation of the High Dynamic Range (HDR) visual world. Despite
limited dynamic range, these LDR images are often captured with different
exposures, implicitly containing information about the underlying HDR image
distribution. Inspired by this intuition, in this work we present, to the best
of our knowledge, the first method for learning a generative model of HDR
images from in-the-wild LDR image collections in a fully unsupervised manner.
The key idea is to train a generative adversarial network (GAN) to generate HDR
images which, when projected to LDR under various exposures, are
indistinguishable from real LDR images. The projection from HDR to LDR is
achieved via a camera model that captures the stochasticity in exposure and
camera response function. Experiments show that our method GlowGAN can
synthesize photorealistic HDR images in many challenging cases such as
landscapes, lightning, or windows, where previous supervised generative models
produce overexposed images. We further demonstrate the new application of
unsupervised inverse tone mapping (ITM) enabled by GlowGAN. Our ITM method does
not need HDR images or paired multi-exposure images for training, yet it
reconstructs more plausible information for overexposed regions than
state-of-the-art supervised learning models trained on such data.
Related papers
- Exposure Diffusion: HDR Image Generation by Consistent LDR denoising [29.45922922270381]
We seek inspiration from the HDR image capture literature that traditionally fuses sets of LDR images, called "brackets", to produce a single HDR image.
We operate multiple denoising processes to generate multiple LDR brackets that together form a valid HDR result.
arXiv Detail & Related papers (2024-05-23T08:24:22Z) - Pano-NeRF: Synthesizing High Dynamic Range Novel Views with Geometry
from Sparse Low Dynamic Range Panoramic Images [82.1477261107279]
We propose the irradiance fields from sparse LDR panoramic images to increase the observation counts for faithful geometry recovery.
Experiments demonstrate that the irradiance fields outperform state-of-the-art methods on both geometry recovery and HDR reconstruction.
arXiv Detail & Related papers (2023-12-26T08:10:22Z) - Self-Supervised High Dynamic Range Imaging with Multi-Exposure Images in
Dynamic Scenes [58.66427721308464]
Self is a self-supervised reconstruction method that only requires dynamic multi-exposure images during training.
Self achieves superior results against the state-of-the-art self-supervised methods, and comparable performance to supervised ones.
arXiv Detail & Related papers (2023-10-03T07:10:49Z) - Self-supervised HDR Imaging from Motion and Exposure Cues [14.57046548797279]
We propose a novel self-supervised approach for learnable HDR estimation that alleviates the need for HDR ground-truth labels.
Experimental results show that the HDR models trained using our proposed self-supervision approach achieve performance competitive with those trained under full supervision.
arXiv Detail & Related papers (2022-03-23T10:22:03Z) - HDR-NeRF: High Dynamic Range Neural Radiance Fields [70.80920996881113]
We present High Dynamic Range Neural Radiance Fields (-NeRF) to recover an HDR radiance field from a set of low dynamic range (LDR) views with different exposures.
We are able to generate both novel HDR views and novel LDR views under different exposures.
arXiv Detail & Related papers (2021-11-29T11:06:39Z) - HDR-cGAN: Single LDR to HDR Image Translation using Conditional GAN [24.299931323012757]
Low Dynamic Range (LDR) cameras are incapable of representing the wide dynamic range of the real-world scene.
We propose a deep learning based approach to recover details in the saturated areas while reconstructing the HDR image.
We present a novel conditional GAN (cGAN) based framework trained in an end-to-end fashion over the HDR-REAL and HDR-SYNTH datasets.
arXiv Detail & Related papers (2021-10-04T18:50:35Z) - A Two-stage Deep Network for High Dynamic Range Image Reconstruction [0.883717274344425]
This study tackles the challenges of single-shot LDR to HDR mapping by proposing a novel two-stage deep network.
Notably, our proposed method aims to reconstruct an HDR image without knowing hardware information, including camera response function (CRF) and exposure settings.
arXiv Detail & Related papers (2021-04-19T15:19:17Z) - Beyond Visual Attractiveness: Physically Plausible Single Image HDR
Reconstruction for Spherical Panoramas [60.24132321381606]
We introduce the physical illuminance constraints to our single-shot HDR reconstruction framework.
Our method can generate HDRs which are not only visually appealing but also physically plausible.
arXiv Detail & Related papers (2021-03-24T01:51:19Z) - HDR-GAN: HDR Image Reconstruction from Multi-Exposed LDR Images with
Large Motions [62.44802076971331]
We propose a novel GAN-based model, HDR-GAN, for synthesizing HDR images from multi-exposed LDR images.
By incorporating adversarial learning, our method is able to produce faithful information in the regions with missing content.
arXiv Detail & Related papers (2020-07-03T11:42:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.