Touch and Go: Learning from Human-Collected Vision and Touch
- URL: http://arxiv.org/abs/2211.12498v1
- Date: Tue, 22 Nov 2022 18:59:32 GMT
- Title: Touch and Go: Learning from Human-Collected Vision and Touch
- Authors: Fengyu Yang, Chenyang Ma, Jiacheng Zhang, Jing Zhu, Wenzhen Yuan,
Andrew Owens
- Abstract summary: We propose a dataset with paired visual and tactile data called Touch and Go.
Human data collectors probe objects in natural environments using tactile sensors.
Our dataset spans a large number of "in the wild" objects and scenes.
- Score: 16.139106833276
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The ability to associate touch with sight is essential for tasks that require
physically interacting with objects in the world. We propose a dataset with
paired visual and tactile data called Touch and Go, in which human data
collectors probe objects in natural environments using tactile sensors, while
simultaneously recording egocentric video. In contrast to previous efforts,
which have largely been confined to lab settings or simulated environments, our
dataset spans a large number of "in the wild" objects and scenes. To
demonstrate our dataset's effectiveness, we successfully apply it to a variety
of tasks: 1) self-supervised visuo-tactile feature learning, 2) tactile-driven
image stylization, i.e., making the visual appearance of an object more
consistent with a given tactile signal, and 3) predicting future frames of a
tactile signal from visuo-tactile inputs.
Related papers
- PseudoTouch: Efficiently Imaging the Surface Feel of Objects for Robotic Manipulation [8.997347199266592]
Our goal is to equip robots with a similar capability, which we term ourmodel.
We frame this problem as the task of learning a low-dimensional visual-tactile embedding.
Using ReSkin, we collect and train PseudoTouch on a dataset comprising aligned tactile and visual data pairs.
We demonstrate the efficacy of PseudoTouch through its application to two downstream tasks: object recognition and grasp stability prediction.
arXiv Detail & Related papers (2024-03-22T10:51:31Z) - Attention for Robot Touch: Tactile Saliency Prediction for Robust
Sim-to-Real Tactile Control [12.302685367517718]
High-resolution tactile sensing can provide accurate information about local contact in contact-rich robotic tasks.
We study a new concept: textittactile saliency for robot touch, inspired by the human touch attention mechanism from neuroscience.
arXiv Detail & Related papers (2023-07-26T21:19:45Z) - The ObjectFolder Benchmark: Multisensory Learning with Neural and Real
Objects [51.22194706674366]
We introduce the Object Benchmark, a benchmark suite of 10 tasks for multisensory object-centric learning.
We also introduce the Object Real dataset, including the multisensory measurements for 100 real-world household objects.
arXiv Detail & Related papers (2023-06-01T17:51:22Z) - Controllable Visual-Tactile Synthesis [28.03469909285511]
We develop a conditional generative model that synthesizes both visual and tactile outputs from a single sketch.
We then introduce a pipeline to render high-quality visual and tactile outputs on an electroadhesion-based haptic device.
arXiv Detail & Related papers (2023-05-04T17:59:51Z) - Tactile-Filter: Interactive Tactile Perception for Part Mating [54.46221808805662]
Humans rely on touch and tactile sensing for a lot of dexterous manipulation tasks.
vision-based tactile sensors are being widely used for various robotic perception and control tasks.
We present a method for interactive perception using vision-based tactile sensors for a part mating task.
arXiv Detail & Related papers (2023-03-10T16:27:37Z) - Visual-Tactile Multimodality for Following Deformable Linear Objects
Using Reinforcement Learning [15.758583731036007]
We study the problem of using vision and tactile inputs together to complete the task of following deformable linear objects.
We create a Reinforcement Learning agent using different sensing modalities and investigate how its behaviour can be boosted.
Our experiments show that the use of both vision and tactile inputs, together with proprioception, allows the agent to complete the task in up to 92% of cases.
arXiv Detail & Related papers (2022-03-31T21:59:08Z) - ObjectFolder: A Dataset of Objects with Implicit Visual, Auditory, and
Tactile Representations [52.226947570070784]
We present Object, a dataset of 100 objects that addresses both challenges with two key innovations.
First, Object encodes the visual, auditory, and tactile sensory data for all objects, enabling a number of multisensory object recognition tasks.
Second, Object employs a uniform, object-centric simulations, and implicit representation for each object's visual textures, tactile readings, and tactile readings, making the dataset flexible to use and easy to share.
arXiv Detail & Related papers (2021-09-16T14:00:59Z) - Dynamic Modeling of Hand-Object Interactions via Tactile Sensing [133.52375730875696]
In this work, we employ a high-resolution tactile glove to perform four different interactive activities on a diversified set of objects.
We build our model on a cross-modal learning framework and generate the labels using a visual processing pipeline to supervise the tactile model.
This work takes a step on dynamics modeling in hand-object interactions from dense tactile sensing.
arXiv Detail & Related papers (2021-09-09T16:04:14Z) - Elastic Tactile Simulation Towards Tactile-Visual Perception [58.44106915440858]
We propose Elastic Interaction of Particles (EIP) for tactile simulation.
EIP models the tactile sensor as a group of coordinated particles, and the elastic property is applied to regulate the deformation of particles during contact.
We further propose a tactile-visual perception network that enables information fusion between tactile data and visual images.
arXiv Detail & Related papers (2021-08-11T03:49:59Z) - Learning Intuitive Physics with Multimodal Generative Models [24.342994226226786]
This paper presents a perception framework that fuses visual and tactile feedback to make predictions about the expected motion of objects in dynamic scenes.
We use a novel See-Through-your-Skin (STS) sensor that provides high resolution multimodal sensing of contact surfaces.
We validate through simulated and real-world experiments in which the resting state of an object is predicted from given initial conditions.
arXiv Detail & Related papers (2021-01-12T12:55:53Z) - iGibson, a Simulation Environment for Interactive Tasks in Large
Realistic Scenes [54.04456391489063]
iGibson is a novel simulation environment to develop robotic solutions for interactive tasks in large-scale realistic scenes.
Our environment contains fifteen fully interactive home-sized scenes populated with rigid and articulated objects.
iGibson features enable the generalization of navigation agents, and that the human-iGibson interface and integrated motion planners facilitate efficient imitation learning of simple human demonstrated behaviors.
arXiv Detail & Related papers (2020-12-05T02:14:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.