SimVP: Towards Simple yet Powerful Spatiotemporal Predictive Learning
- URL: http://arxiv.org/abs/2211.12509v3
- Date: Wed, 26 Apr 2023 02:53:47 GMT
- Title: SimVP: Towards Simple yet Powerful Spatiotemporal Predictive Learning
- Authors: Cheng Tan, Zhangyang Gao, Siyuan Li, Stan Z. Li
- Abstract summary: This paper proposes SimVP, a simple squaredtemporal predictive baseline model that is completely built upon convolutional networks.
SimVP can achieve superior performance on various benchmark datasets.
- Score: 44.486014516093334
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent years have witnessed remarkable advances in spatiotemporal predictive
learning, incorporating auxiliary inputs, elaborate neural architectures, and
sophisticated training strategies. Although impressive, the system complexity
of mainstream methods is increasing as well, which may hinder the convenient
applications. This paper proposes SimVP, a simple spatiotemporal predictive
baseline model that is completely built upon convolutional networks without
recurrent architectures and trained by common mean squared error loss in an
end-to-end fashion. Without introducing any extra tricks and strategies, SimVP
can achieve superior performance on various benchmark datasets. To further
improve the performance, we derive variants with the gated spatiotemporal
attention translator from SimVP that can achieve better performance. We
demonstrate that SimVP has strong generalization and extensibility on
real-world datasets through extensive experiments. The significant reduction in
training cost makes it easier to scale to complex scenarios. We believe SimVP
can serve as a solid baseline to benefit the spatiotemporal predictive learning
community.
Related papers
- Underlying Semantic Diffusion for Effective and Efficient In-Context Learning [113.4003355229632]
Underlying Semantic Diffusion (US-Diffusion) is an enhanced diffusion model that boosts underlying semantics learning, computational efficiency, and in-context learning capabilities.
We present a Feedback-Aided Learning (FAL) framework, which leverages feedback signals to guide the model in capturing semantic details.
We also propose a plug-and-play Efficient Sampling Strategy (ESS) for dense sampling at time steps with high-noise levels.
arXiv Detail & Related papers (2025-03-06T03:06:22Z) - Autonomous Vehicle Controllers From End-to-End Differentiable Simulation [60.05963742334746]
We propose a differentiable simulator and design an analytic policy gradients (APG) approach to training AV controllers.
Our proposed framework brings the differentiable simulator into an end-to-end training loop, where gradients of environment dynamics serve as a useful prior to help the agent learn a more grounded policy.
We find significant improvements in performance and robustness to noise in the dynamics, as well as overall more intuitive human-like handling.
arXiv Detail & Related papers (2024-09-12T11:50:06Z) - EasyST: A Simple Framework for Spatio-Temporal Prediction [18.291117879544945]
We propose a simple framework for spatial-temporal prediction - EasyST paradigm.
It learns lightweight and robust Multi-Layer Perceptrons (MLPs) generalization by distilling knowledge from complex-temporal GNNs.
EasyST surpasses state-of-the-art approaches in terms of efficiency and accuracy.
arXiv Detail & Related papers (2024-09-10T11:40:01Z) - Gaussian Splatting to Real World Flight Navigation Transfer with Liquid Networks [93.38375271826202]
We present a method to improve generalization and robustness to distribution shifts in sim-to-real visual quadrotor navigation tasks.
We first build a simulator by integrating Gaussian splatting with quadrotor flight dynamics, and then, train robust navigation policies using Liquid neural networks.
In this way, we obtain a full-stack imitation learning protocol that combines advances in 3D Gaussian splatting radiance field rendering, programming of expert demonstration training data, and the task understanding capabilities of Liquid networks.
arXiv Detail & Related papers (2024-06-21T13:48:37Z) - Tao: Re-Thinking DL-based Microarchitecture Simulation [8.501776613988484]
Existing microarchitecture simulators excel and fall short at different aspects.
Deep learning (DL)-based simulations are remarkably fast and have acceptable accuracy but fail to provide adequate low-level microarchitectural performance metrics.
This paper introduces TAO that redesigns the DL-based simulation with three primary contributions.
arXiv Detail & Related papers (2024-04-16T21:45:10Z) - Augmenting Offline Reinforcement Learning with State-only Interactions [12.100856289121863]
Batch offline data have been shown considerably beneficial for reinforcement learning.
In this paper, we consider a novel opportunity where interaction with environment is feasible, but only restricted to observations.
As a result, the learner must make good sense of the offline data to synthesize an efficient scheme of querying the transition of state.
arXiv Detail & Related papers (2024-02-01T17:44:11Z) - Predicting Traffic Flow with Federated Learning and Graph Neural with Asynchronous Computations Network [0.0]
We present a novel deep-learning method called Federated Learning and Asynchronous Graph Convolutional Networks (FLAGCN)
Our framework incorporates the principles of asynchronous graph convolutional networks with federated learning to enhance accuracy and efficiency of real-time traffic flow prediction.
arXiv Detail & Related papers (2024-01-05T09:36:42Z) - The Trifecta: Three simple techniques for training deeper
Forward-Forward networks [0.0]
We propose a collection of three techniques that synergize exceptionally well and drastically improve the Forward-Forward algorithm on deeper networks.
Our experiments demonstrate that our models are on par with similarly structured, backpropagation-based models in both training speed and test accuracy on simple datasets.
arXiv Detail & Related papers (2023-11-29T22:44:32Z) - Representation Learning with Multi-Step Inverse Kinematics: An Efficient
and Optimal Approach to Rich-Observation RL [106.82295532402335]
Existing reinforcement learning algorithms suffer from computational intractability, strong statistical assumptions, and suboptimal sample complexity.
We provide the first computationally efficient algorithm that attains rate-optimal sample complexity with respect to the desired accuracy level.
Our algorithm, MusIK, combines systematic exploration with representation learning based on multi-step inverse kinematics.
arXiv Detail & Related papers (2023-04-12T14:51:47Z) - Hindsight States: Blending Sim and Real Task Elements for Efficient
Reinforcement Learning [61.3506230781327]
In robotics, one approach to generate training data builds on simulations based on dynamics models derived from first principles.
Here, we leverage the imbalance in complexity of the dynamics to learn more sample-efficiently.
We validate our method on several challenging simulated tasks and demonstrate that it improves learning both alone and when combined with an existing hindsight algorithm.
arXiv Detail & Related papers (2023-03-03T21:55:04Z) - On Fast Simulation of Dynamical System with Neural Vector Enhanced
Numerical Solver [59.13397937903832]
We introduce a deep learning-based corrector called Neural Vector (NeurVec)
NeurVec can compensate for integration errors and enable larger time step sizes in simulations.
Our experiments on a variety of complex dynamical system benchmarks demonstrate that NeurVec exhibits remarkable generalization capability.
arXiv Detail & Related papers (2022-08-07T09:02:18Z) - SimVP: Simpler yet Better Video Prediction [38.42917984016527]
This paper proposes SimVP, a simple video prediction model that is completely built upon CNN.
We achieve state-of-the-art performance on five benchmark datasets.
We believe SimVP can serve as a solid baseline to stimulate the further development of video prediction.
arXiv Detail & Related papers (2022-06-09T02:03:21Z) - Improving Sample Efficiency of Value Based Models Using Attention and
Vision Transformers [52.30336730712544]
We introduce a deep reinforcement learning architecture whose purpose is to increase sample efficiency without sacrificing performance.
We propose a visually attentive model that uses transformers to learn a self-attention mechanism on the feature maps of the state representation.
We demonstrate empirically that this architecture improves sample complexity for several Atari environments, while also achieving better performance in some of the games.
arXiv Detail & Related papers (2022-02-01T19:03:03Z) - Training Efficiency and Robustness in Deep Learning [2.6451769337566406]
We study approaches to improve the training efficiency and robustness of deep learning models.
We find that prioritizing learning on more informative training data increases convergence speed and improves generalization performance on test data.
We show that a redundancy-aware modification to the sampling of training data improves the training speed and develops an efficient method for detecting the diversity of training signal.
arXiv Detail & Related papers (2021-12-02T17:11:33Z) - TRAIL: Near-Optimal Imitation Learning with Suboptimal Data [100.83688818427915]
We present training objectives that use offline datasets to learn a factored transition model.
Our theoretical analysis shows that the learned latent action space can boost the sample-efficiency of downstream imitation learning.
To learn the latent action space in practice, we propose TRAIL (Transition-Reparametrized Actions for Imitation Learning), an algorithm that learns an energy-based transition model.
arXiv Detail & Related papers (2021-10-27T21:05:00Z) - Deep Bayesian Active Learning for Accelerating Stochastic Simulation [74.58219903138301]
Interactive Neural Process (INP) is a deep active learning framework for simulations and with active learning approaches.
For active learning, we propose a novel acquisition function, Latent Information Gain (LIG), calculated in the latent space of NP based models.
The results demonstrate STNP outperforms the baselines in the learning setting and LIG achieves the state-of-the-art for active learning.
arXiv Detail & Related papers (2021-06-05T01:31:51Z) - On the Theory of Reinforcement Learning with Once-per-Episode Feedback [120.5537226120512]
We introduce a theory of reinforcement learning in which the learner receives feedback only once at the end of an episode.
This is arguably more representative of real-world applications than the traditional requirement that the learner receive feedback at every time step.
arXiv Detail & Related papers (2021-05-29T19:48:51Z) - Multi-objective Neural Architecture Search with Almost No Training [9.93048700248444]
We propose an effective alternative, dubbed Random-Weight Evaluation (RWE), to rapidly estimate the performance of network architectures.
RWE reduces the computational cost of evaluating an architecture from hours to seconds.
When integrated within an evolutionary multi-objective algorithm, RWE obtains a set of efficient architectures with state-of-the-art performance on CIFAR-10 with less than two hours' searching on a single GPU card.
arXiv Detail & Related papers (2020-11-27T07:39:17Z) - Federated Transfer Learning with Dynamic Gradient Aggregation [27.42998421786922]
This paper introduces a Federated Learning (FL) simulation platform for Acoustic Model training.
The proposed FL platform can support different tasks based on the adopted modular design.
It is shown to outperform the golden standard of distributed training in both convergence speed and overall model performance.
arXiv Detail & Related papers (2020-08-06T04:29:01Z) - STONNE: A Detailed Architectural Simulator for Flexible Neural Network
Accelerators [5.326345912766044]
STONNE is a cycle-accurate, highly-modular and highly-extensible simulation framework.
We show how it can closely approach the performance results of the publicly available BSV-coded MAERI implementation.
arXiv Detail & Related papers (2020-06-10T19:20:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.