Projection-free Adaptive Regret with Membership Oracles
- URL: http://arxiv.org/abs/2211.12638v1
- Date: Tue, 22 Nov 2022 23:53:06 GMT
- Title: Projection-free Adaptive Regret with Membership Oracles
- Authors: Zhou Lu, Nataly Brukhim, Paula Gradu, Elad Hazan
- Abstract summary: Most iterative algorithms require the computation of projections onto convex sets, which can be computationally expensive.
Recent work by GK22 gave sublinear adaptive regret guarantees with projection free algorithms based on the Frank Wolfe approach.
We give projection-free algorithms that are based on a different technique, inspired by Mhammedi22, that replaces projections by set-membership computations.
- Score: 31.422532403048738
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In the framework of online convex optimization, most iterative algorithms
require the computation of projections onto convex sets, which can be
computationally expensive. To tackle this problem HK12 proposed the study of
projection-free methods that replace projections with less expensive
computations. The most common approach is based on the Frank-Wolfe method, that
uses linear optimization computation in lieu of projections. Recent work by
GK22 gave sublinear adaptive regret guarantees with projection free algorithms
based on the Frank Wolfe approach.
In this work we give projection-free algorithms that are based on a different
technique, inspired by Mhammedi22, that replaces projections by set-membership
computations. We propose a simple lazy gradient-based algorithm with a
Minkowski regularization that attains near-optimal adaptive regret bounds. For
general convex loss functions we improve previous adaptive regret bounds from
$O(T^{3/4})$ to $O(\sqrt{T})$, and further to tight interval dependent bound
$\tilde{O}(\sqrt{I})$ where $I$ denotes the interval length. For strongly
convex functions we obtain the first poly-logarithmic adaptive regret bounds
using a projection-free algorithm.
Related papers
- Nearly Minimax Optimal Regret for Learning Linear Mixture Stochastic
Shortest Path [80.60592344361073]
We study the Shortest Path (SSP) problem with a linear mixture transition kernel.
An agent repeatedly interacts with a environment and seeks to reach certain goal state while minimizing the cumulative cost.
Existing works often assume a strictly positive lower bound of the iteration cost function or an upper bound of the expected length for the optimal policy.
arXiv Detail & Related papers (2024-02-14T07:52:00Z) - Nonsmooth Projection-Free Optimization with Functional Constraints [12.20060970177791]
This paper presents a subgradient-based algorithm for constrained nonsmooth convex computation.
Our proposed algorithm can handle nonsmooth problems with general convex functional inequality constraints.
Similar performance is observed when deterministic subgradients are replaced with subgradients.
arXiv Detail & Related papers (2023-11-18T23:06:33Z) - Improved Projection-free Online Continuous Submodular Maximization [35.324719857218014]
We investigate the problem of online learning with monotone and continuous DR-submodular reward functions.
Previous studies have proposed an efficient projection-free algorithm called Mono-Frank-Wolfe (Mono-FW) using $O(T)$ gradient evaluations.
We propose an improved projection-free algorithm, namely POBGA, which reduces the regret bound to $O(T3/4)$ while keeping the same computational complexity.
arXiv Detail & Related papers (2023-05-29T02:54:31Z) - Adapting to Misspecification in Contextual Bandits [82.55565343668246]
We introduce a new family of oracle-efficient algorithms for $varepsilon$-misspecified contextual bandits.
We obtain the first algorithm that achieves the optimal $O(dsqrtT + varepsilonsqrtdT)$ regret bound for unknown misspecification level.
arXiv Detail & Related papers (2021-07-12T21:30:41Z) - Reusing Combinatorial Structure: Faster Iterative Projections over
Submodular Base Polytopes [7.734726150561089]
We develop a toolkit to speed up the computation of projections using both discrete and continuous perspectives.
For the special case of cardinality based submodular polytopes, we improve the runtime of computing certain Bregman projections by a factor of $Omega(n/log(n))$.
arXiv Detail & Related papers (2021-06-22T17:29:24Z) - Efficient Projection-Free Algorithms for Saddle Point Problems [39.88460595129901]
We study projection-free algorithms for convex-strongly-concave saddle point problems with complicated constraints.
Our method combines Conditional Gradient Sliding with Mirror-Prox and shows that it only requires $tildeO (1/sqrtepsilon)$ evaluations and $tildeO (1/epsilon2)$ linear optimizations in the batch setting.
arXiv Detail & Related papers (2020-10-21T15:05:53Z) - A Two-Timescale Framework for Bilevel Optimization: Complexity Analysis
and Application to Actor-Critic [142.1492359556374]
Bilevel optimization is a class of problems which exhibit a two-level structure.
We propose a two-timescale approximation (TTSA) algorithm for tackling such a bilevel problem.
We show that a two-timescale natural actor-critic policy optimization algorithm can be viewed as a special case of our TTSA framework.
arXiv Detail & Related papers (2020-07-10T05:20:02Z) - Private Stochastic Non-Convex Optimization: Adaptive Algorithms and
Tighter Generalization Bounds [72.63031036770425]
We propose differentially private (DP) algorithms for bound non-dimensional optimization.
We demonstrate two popular deep learning methods on the empirical advantages over standard gradient methods.
arXiv Detail & Related papers (2020-06-24T06:01:24Z) - Convergence of adaptive algorithms for weakly convex constrained
optimization [59.36386973876765]
We prove the $mathcaltilde O(t-1/4)$ rate of convergence for the norm of the gradient of Moreau envelope.
Our analysis works with mini-batch size of $1$, constant first and second order moment parameters, and possibly smooth optimization domains.
arXiv Detail & Related papers (2020-06-11T17:43:19Z) - Private Stochastic Convex Optimization: Optimal Rates in Linear Time [74.47681868973598]
We study the problem of minimizing the population loss given i.i.d. samples from a distribution over convex loss functions.
A recent work of Bassily et al. has established the optimal bound on the excess population loss achievable given $n$ samples.
We describe two new techniques for deriving convex optimization algorithms both achieving the optimal bound on excess loss and using $O(minn, n2/d)$ gradient computations.
arXiv Detail & Related papers (2020-05-10T19:52:03Z) - Faster Projection-free Online Learning [34.96927532439896]
We give an efficient projection-free algorithm that guarantees $T2/3$ regret for general online convex optimization.
Our algorithm is derived using the Follow-the-Perturbed-Leader method and is analyzed using an online primal-dual framework.
arXiv Detail & Related papers (2020-01-30T21:18:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.