Predicting Topological Maps for Visual Navigation in Unexplored
Environments
- URL: http://arxiv.org/abs/2211.12649v1
- Date: Wed, 23 Nov 2022 00:53:11 GMT
- Title: Predicting Topological Maps for Visual Navigation in Unexplored
Environments
- Authors: Huangying Zhan, Hamid Rezatofighi, Ian Reid
- Abstract summary: We propose a robotic learning system for autonomous exploration and navigation in unexplored environments.
The core of our method is a process for building, predicting, and using probabilistic layout graphs for assisting goal-based visual navigation.
We test our framework in Matterport3D and show more success and efficient navigation in unseen environments.
- Score: 28.30219170556201
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: We propose a robotic learning system for autonomous exploration and
navigation in unexplored environments. We are motivated by the idea that even
an unseen environment may be familiar from previous experiences in similar
environments. The core of our method, therefore, is a process for building,
predicting, and using probabilistic layout graphs for assisting goal-based
visual navigation. We describe a navigation system that uses the layout
predictions to satisfy high-level goals (e.g. "go to the kitchen") more rapidly
and accurately than the prior art. Our proposed navigation framework comprises
three stages: (1) Perception and Mapping: building a multi-level 3D scene
graph; (2) Prediction: predicting probabilistic 3D scene graph for the
unexplored environment; (3) Navigation: assisting navigation with the graphs.
We test our framework in Matterport3D and show more success and efficient
navigation in unseen environments.
Related papers
- Aligning Knowledge Graph with Visual Perception for Object-goal Navigation [16.32780793344835]
We propose the Aligning Knowledge Graph with Visual Perception (AKGVP) method for object-goal navigation.
Our approach introduces continuous modeling of the hierarchical scene architecture and leverages visual-language pre-training to align natural language description with visual perception.
The integration of a continuous knowledge graph architecture and multimodal feature alignment empowers the navigator with a remarkable zero-shot navigation capability.
arXiv Detail & Related papers (2024-02-29T06:31:18Z) - Object Goal Navigation with Recursive Implicit Maps [92.6347010295396]
We propose an implicit spatial map for object goal navigation.
Our method significantly outperforms the state of the art on the challenging MP3D dataset.
We deploy our model on a real robot and achieve encouraging object goal navigation results in real scenes.
arXiv Detail & Related papers (2023-08-10T14:21:33Z) - Learning Navigational Visual Representations with Semantic Map
Supervision [85.91625020847358]
We propose a navigational-specific visual representation learning method by contrasting the agent's egocentric views and semantic maps.
Ego$2$-Map learning transfers the compact and rich information from a map, such as objects, structure and transition, to the agent's egocentric representations for navigation.
arXiv Detail & Related papers (2023-07-23T14:01:05Z) - ViKiNG: Vision-Based Kilometer-Scale Navigation with Geographic Hints [94.60414567852536]
Long-range navigation requires both planning and reasoning about local traversability.
We propose a learning-based approach that integrates learning and planning.
ViKiNG can leverage its image-based learned controller and goal-directed to navigate to goals up to 3 kilometers away.
arXiv Detail & Related papers (2022-02-23T02:14:23Z) - Lifelong Topological Visual Navigation [16.41858724205884]
We propose a learning-based visual navigation method with graph update strategies that improve lifelong navigation performance over time.
We take inspiration from sampling-based planning algorithms to build image-based topological graphs, resulting in sparser graphs yet with higher navigation performance compared to baseline methods.
Unlike controllers that learn from fixed training environments, we show that our model can be finetuned using a relatively small dataset from the real-world environment where the robot is deployed.
arXiv Detail & Related papers (2021-10-16T06:16:14Z) - SOON: Scenario Oriented Object Navigation with Graph-based Exploration [102.74649829684617]
The ability to navigate like a human towards a language-guided target from anywhere in a 3D embodied environment is one of the 'holy grail' goals of intelligent robots.
Most visual navigation benchmarks focus on navigating toward a target from a fixed starting point, guided by an elaborate set of instructions that depicts step-by-step.
This approach deviates from real-world problems in which human-only describes what the object and its surrounding look like and asks the robot to start navigation from anywhere.
arXiv Detail & Related papers (2021-03-31T15:01:04Z) - ViNG: Learning Open-World Navigation with Visual Goals [82.84193221280216]
We propose a learning-based navigation system for reaching visually indicated goals.
We show that our system, which we call ViNG, outperforms previously-proposed methods for goal-conditioned reinforcement learning.
We demonstrate ViNG on a number of real-world applications, such as last-mile delivery and warehouse inspection.
arXiv Detail & Related papers (2020-12-17T18:22:32Z) - Occupancy Anticipation for Efficient Exploration and Navigation [97.17517060585875]
We propose occupancy anticipation, where the agent uses its egocentric RGB-D observations to infer the occupancy state beyond the visible regions.
By exploiting context in both the egocentric views and top-down maps our model successfully anticipates a broader map of the environment.
Our approach is the winning entry in the 2020 Habitat PointNav Challenge.
arXiv Detail & Related papers (2020-08-21T03:16:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.