Identifying unbound strong bunching and the breakdown of the Rotating
Wave Approximation in the quantum Rabi model
- URL: http://arxiv.org/abs/2211.13249v2
- Date: Wed, 11 Oct 2023 01:36:14 GMT
- Title: Identifying unbound strong bunching and the breakdown of the Rotating
Wave Approximation in the quantum Rabi model
- Authors: \'Alvaro Nodar, Ruben Esteban, Unai Muniain, Michael J. Steel, Javier
Aizpurua, and Miko{\l}aj K. Schmidt
- Abstract summary: We find strong, unbounded bunching of the emission from systems governed by the Rabi Hamiltonian.
Surprisingly, this effect is observed not only in the ultra-strong coupling regime, but also for weakly coupled systems.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We use a recently derived gauge-invariant formulation of the problem of a
two-level system coupled to an optical cavity, to explore the transition
between the weak, and the ultra-strong coupling regimes of light-matter
interaction. We explore this transition using the intensity correlations
$g^{(2)}(\tau)$ of the emitted light, and find strong, unbounded bunching of
the emission from systems governed by the Rabi Hamiltonian. Surprisingly, this
effect is observed not only in the ultra-strong coupling regime, but also for
weakly coupled systems, where the Jaynes-Cummings Hamiltonian would predict the
opposite, antibunched emission. This suggests that the higher-order
correlations are a particularly sensitive probe of the divergence between the
Jaynes-Cummings and Rabi Hamiltonians, and can serve as an indicator of the
breakdown of the rotating wave approximation. Our findings indicate also that
the boundary between the weakly, strongly, and ultra-strongly coupled dynamics,
is much richer than currently accepted.
Related papers
- Quantum steering and entanglement for coupled systems: exact results [0.0]
We derive expressions for purity and quantum steering in both directions.
We show that quantum steering is completely absent even in the ultra-strong coupling regime.
These results advance our understanding of how levels and coupling strengths influence quantum correlations.
arXiv Detail & Related papers (2024-11-11T14:14:10Z) - Crossing exceptional points in non-Hermitian quantum systems [41.94295877935867]
We reveal the behavior of two-photon quantum states in non-Hermitian systems across the exceptional point.
We demonstrate a switching in the quantum interference of photons directly at the exceptional point.
arXiv Detail & Related papers (2024-07-17T14:04:00Z) - Bath-induced interactions and transient dynamics in open quantum systems at strong coupling: Effective Hamiltonian approach [0.0]
We employ the recently-developed method dubbed the effective Hamiltonian theory to understand the dynamics of system-bath configurations.
Through a combination of mapping steps and truncation, the effective Hamiltonian theory offers both analytical insights into signatures of strong couplings.
We show that although the former overlooks non-Markovian features in the transient equilibration dynamics, it correctly captures non-perturbative bath-generated couplings.
arXiv Detail & Related papers (2024-03-06T00:47:38Z) - Impact of the phonon environment on the nonlinear quantum-dot-cavity
QED. I. Path-integral approach [0.0]
We show a strong influence of the phonon environment on the coherent dynamics of the quantum dot (QD)-cavity system.
We present a semi-analytically exact path-based approach to the nonlinear optical response of this system.
arXiv Detail & Related papers (2023-06-30T15:08:29Z) - Higher-order mean-field theory of chiral waveguide QED [0.0]
Waveguide QED with cold atoms provides a potent platform for the study of non-equilibrium, many-body, and open-system quantum dynamics.
We apply an improved mean-field theory based on higher-order cumulant expansions to describe the experimentally relevant, but theoretically elusive, regime of weak coupling.
Our approach allows to quantify the trade-off between anti-bunching and output power in previously inaccessible parameter regimes.
arXiv Detail & Related papers (2022-07-21T12:22:41Z) - Reminiscence of classical chaos in driven transmons [117.851325578242]
We show that even off-resonant drives can cause strong modifications to the structure of the transmon spectrum rendering a large part of it chaotic.
Results lead to a photon number threshold characterizing the appearance of chaos-induced quantum demolition effects.
arXiv Detail & Related papers (2022-07-19T16:04:46Z) - Non-Gaussian superradiant transition via three-body ultrastrong coupling [62.997667081978825]
We introduce a class of quantum optical Hamiltonian characterized by three-body couplings.
We propose a circuit-QED scheme based on state-of-the-art technology that implements the considered model.
arXiv Detail & Related papers (2022-04-07T15:39:21Z) - Regimes of Cavity-QED under Incoherent Excitation: From Weak to Deep
Strong Coupling [0.0]
A two-level atom interacting with a quantized single-mode electromagnetic field is described by the quantum Rabi model (QRM)
Here, we study the photon flux emission rate of this system under the incoherent excitation of the two-level atom for any light-matter interaction strength.
arXiv Detail & Related papers (2021-12-16T14:36:54Z) - Quantum asymmetry and noisy multi-mode interferometry [55.41644538483948]
Quantum asymmetry is a physical resource which coincides with the amount of coherence between the eigenspaces of a generator.
We show that the asymmetry may emphincrease as a result of a emphdecrease of coherence inside a degenerate subspace.
arXiv Detail & Related papers (2021-07-23T07:30:57Z) - Waveguide quantum optomechanics: parity-time phase transitions in
ultrastrong coupling regime [125.99533416395765]
We show that the simplest set-up of two qubits, harmonically trapped over an optical waveguide, enables the ultrastrong coupling regime of the quantum optomechanical interaction.
The combination of the inherent open nature of the system and the strong optomechanical coupling leads to emerging parity-time (PT) symmetry.
The $mathcalPT$ phase transition drives long-living subradiant states, observable in the state-of-the-art waveguide QED setups.
arXiv Detail & Related papers (2020-07-04T11:02:20Z) - Feedback-induced instabilities and dynamics in the Jaynes-Cummings model [62.997667081978825]
We investigate the coherence and steady-state properties of the Jaynes-Cummings model subjected to time-delayed coherent feedback.
The introduced feedback qualitatively modifies the dynamical response and steady-state quantum properties of the system.
arXiv Detail & Related papers (2020-06-20T10:07:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.