HouseDiffusion: Vector Floorplan Generation via a Diffusion Model with
Discrete and Continuous Denoising
- URL: http://arxiv.org/abs/2211.13287v1
- Date: Wed, 23 Nov 2022 20:25:11 GMT
- Title: HouseDiffusion: Vector Floorplan Generation via a Diffusion Model with
Discrete and Continuous Denoising
- Authors: Mohammad Amin Shabani, Sepidehsadat Hosseini, Yasutaka Furukawa
- Abstract summary: The paper presents a novel approach for vector-floorplan generation via a diffusion model.
We represent a floorplan as 1D polygonal loops, each of which corresponds to a room or a door.
The proposed approach makes significant improvements in all the metrics against the state-of-the-art with significant margins.
- Score: 26.2029195029127
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: The paper presents a novel approach for vector-floorplan generation via a
diffusion model, which denoises 2D coordinates of room/door corners with two
inference objectives: 1) a single-step noise as the continuous quantity to
precisely invert the continuous forward process; and 2) the final 2D coordinate
as the discrete quantity to establish geometric incident relationships such as
parallelism, orthogonality, and corner-sharing. Our task is graph-conditioned
floorplan generation, a common workflow in floorplan design. We represent a
floorplan as 1D polygonal loops, each of which corresponds to a room or a door.
Our diffusion model employs a Transformer architecture at the core, which
controls the attention masks based on the input graph-constraint and directly
generates vector-graphics floorplans via a discrete and continuous denoising
process. We have evaluated our approach on RPLAN dataset. The proposed approach
makes significant improvements in all the metrics against the state-of-the-art
with significant margins, while being capable of generating non-Manhattan
structures and controlling the exact number of corners per room. A project
website with supplementary video and document is here
https://aminshabani.github.io/housediffusion.
Related papers
- Graph Transformer GANs with Graph Masked Modeling for Architectural
Layout Generation [153.92387500677023]
We present a novel graph Transformer generative adversarial network (GTGAN) to learn effective graph node relations.
The proposed graph Transformer encoder combines graph convolutions and self-attentions in a Transformer to model both local and global interactions.
We also propose a novel self-guided pre-training method for graph representation learning.
arXiv Detail & Related papers (2024-01-15T14:36:38Z) - Polygon Detection for Room Layout Estimation using Heterogeneous Graphs
and Wireframes [2.76240219662896]
This paper presents a network method that can be used to solve room layout estimations tasks.
The network takes an RGB image and estimates a wireframe as well as space using an hourglass backbone.
arXiv Detail & Related papers (2023-06-21T11:55:15Z) - A Hybrid Semantic-Geometric Approach for Clutter-Resistant Floorplan
Generation from Building Point Clouds [2.0859227544921874]
This research proposes a hybrid semantic-geometric approach for clutter-resistant floorplan generation from laser-scanned building point clouds.
The proposed method is evaluated using the metrics of precision, recall, Intersection-over-Union (IOU), Betti error, and warping error.
arXiv Detail & Related papers (2023-05-15T20:08:43Z) - LayoutDiffusion: Improving Graphic Layout Generation by Discrete
Diffusion Probabilistic Models [50.73105631853759]
We present a novel generative model named LayoutDiffusion for automatic layout generation.
It learns to reverse a mild forward process, in which layouts become increasingly chaotic with the growth of forward steps.
It enables two conditional layout generation tasks in a plug-and-play manner without re-training and achieves better performance than existing methods.
arXiv Detail & Related papers (2023-03-21T04:41:02Z) - Graph Transformer GANs for Graph-Constrained House Generation [223.739067413952]
We present a novel graph Transformer generative adversarial network (GTGAN) to learn effective graph node relations.
The GTGAN learns effective graph node relations in an end-to-end fashion for the challenging graph-constrained house generation task.
arXiv Detail & Related papers (2023-03-14T20:35:45Z) - Contour Context: Abstract Structural Distribution for 3D LiDAR Loop
Detection and Metric Pose Estimation [31.968749056155467]
This paper proposes a simple, effective, and efficient topological loop closure detection pipeline with accurate 3-DoF metric pose estimation.
We interpret the Cartesian birds' eye view (BEV) image projected from 3D LiDAR points as layered distribution of structures.
A retrieval key is designed to accelerate the search of a database indexed by layered KD-trees.
arXiv Detail & Related papers (2023-02-13T07:18:24Z) - End-to-end Graph-constrained Vectorized Floorplan Generation with
Panoptic Refinement [16.103152098205566]
We aim to synthesize floorplans as sequences of 1-D vectors, which eases user interaction and design customization.
In the first stage, we encode the room connectivity graph input by users with a graphal network (GCN), then apply an autoregressive transformer network to generate an initial floorplan sequence.
To polish the initial design and generate more visually appealing floorplans, we further propose a novel panoptic refinement network(PRN) composed of a GCN and a transformer network.
arXiv Detail & Related papers (2022-07-27T03:19:20Z) - DeepI2P: Image-to-Point Cloud Registration via Deep Classification [71.3121124994105]
DeepI2P is a novel approach for cross-modality registration between an image and a point cloud.
Our method estimates the relative rigid transformation between the coordinate frames of the camera and Lidar.
We circumvent the difficulty by converting the registration problem into a classification and inverse camera projection optimization problem.
arXiv Detail & Related papers (2021-04-08T04:27:32Z) - Learning Noise-Aware Encoder-Decoder from Noisy Labels by Alternating
Back-Propagation for Saliency Detection [54.98042023365694]
We propose a noise-aware encoder-decoder framework to disentangle a clean saliency predictor from noisy training examples.
The proposed model consists of two sub-models parameterized by neural networks.
arXiv Detail & Related papers (2020-07-23T18:47:36Z) - Scan2Plan: Efficient Floorplan Generation from 3D Scans of Indoor Scenes [9.71137838903781]
Scan2Plan is a novel approach for accurate estimation of a floorplan from a 3D scan of the structural elements of indoor environments.
The proposed method incorporates a two-stage approach where the initial stage clusters an unordered point cloud representation of the scene.
The subsequent stage estimates a closed perimeter, parameterized by a simple polygon, for each individual room.
The final floorplan is simply an assembly of all such room perimeters in the global co-ordinate system.
arXiv Detail & Related papers (2020-03-16T17:59:41Z) - House-GAN: Relational Generative Adversarial Networks for
Graph-constrained House Layout Generation [59.86153321871127]
The main idea is to encode the constraint into the graph structure of its relational networks.
We have demonstrated the proposed architecture for a new house layout generation problem.
arXiv Detail & Related papers (2020-03-16T03:16:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.