DoubleU-NetPlus: A Novel Attention and Context Guided Dual U-Net with
Multi-Scale Residual Feature Fusion Network for Semantic Segmentation of
Medical Images
- URL: http://arxiv.org/abs/2211.14235v1
- Date: Fri, 25 Nov 2022 16:56:26 GMT
- Title: DoubleU-NetPlus: A Novel Attention and Context Guided Dual U-Net with
Multi-Scale Residual Feature Fusion Network for Semantic Segmentation of
Medical Images
- Authors: Md. Rayhan Ahmed, Adnan Ferdous Ashrafi, Raihan Uddin Ahmed, Swakkhar
Shatabda, A.K.M. Muzahidul Islam, Salekul Islam
- Abstract summary: We present a novel dual U-Net-based architecture named DoubleU-NetPlus.
We exploit multi-contextual features and several attention strategies to increase networks' ability to model discriminative feature representation.
To mitigate the gradient vanishing issue and incorporate high-resolution features with deeper spatial details, the standard convolution operation is replaced with the attention-guided residual convolution operations.
- Score: 2.20200533591633
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Accurate segmentation of the region of interest in medical images can provide
an essential pathway for devising effective treatment plans for
life-threatening diseases. It is still challenging for U-Net, and its
state-of-the-art variants, such as CE-Net and DoubleU-Net, to effectively model
the higher-level output feature maps of the convolutional units of the network
mostly due to the presence of various scales of the region of interest,
intricacy of context environments, ambiguous boundaries, and multiformity of
textures in medical images. In this paper, we exploit multi-contextual features
and several attention strategies to increase networks' ability to model
discriminative feature representation for more accurate medical image
segmentation, and we present a novel dual U-Net-based architecture named
DoubleU-NetPlus. The DoubleU-NetPlus incorporates several architectural
modifications. In particular, we integrate EfficientNetB7 as the feature
encoder module, a newly designed multi-kernel residual convolution module, and
an adaptive feature re-calibrating attention-based atrous spatial pyramid
pooling module to progressively and precisely accumulate discriminative
multi-scale high-level contextual feature maps and emphasize the salient
regions. In addition, we introduce a novel triple attention gate module and a
hybrid triple attention module to encourage selective modeling of relevant
medical image features. Moreover, to mitigate the gradient vanishing issue and
incorporate high-resolution features with deeper spatial details, the standard
convolution operation is replaced with the attention-guided residual
convolution operations, ...
Related papers
- MSA$^2$Net: Multi-scale Adaptive Attention-guided Network for Medical Image Segmentation [8.404273502720136]
We introduce MSA$2$Net, a new deep segmentation framework featuring an expedient design of skip-connections.
We propose a Multi-Scale Adaptive Spatial Attention Gate (MASAG) to ensure that spatially relevant features are selectively highlighted.
Our MSA$2$Net outperforms state-of-the-art (SOTA) works or matches their performance.
arXiv Detail & Related papers (2024-07-31T14:41:10Z) - MAProtoNet: A Multi-scale Attentive Interpretable Prototypical Part Network for 3D Magnetic Resonance Imaging Brain Tumor Classification [25.056170817680403]
We propose a Multi-scale Attentive Prototypical part Network, termed MAProtoNet, to provide more precise maps for attribution.
Specifically, we introduce a concise multi-scale module to merge attentive features from quadruplet attention layers, and produces attribution maps.
Compared to existing interpretable part networks in medical imaging, MAProtoNet can achieve state-of-the-art performance in localization.
arXiv Detail & Related papers (2024-04-13T07:30:17Z) - Enhancing Retinal Vascular Structure Segmentation in Images With a Novel
Design Two-Path Interactive Fusion Module Model [6.392575673488379]
We introduce Swin-Res-Net, a specialized module designed to enhance the precision of retinal vessel segmentation.
Swin-Res-Net utilizes the Swin transformer which uses shifted windows with displacement for partitioning.
Our proposed architecture produces outstanding results, either meeting or surpassing those of other published models.
arXiv Detail & Related papers (2024-03-03T01:36:11Z) - Dual-scale Enhanced and Cross-generative Consistency Learning for Semi-supervised Medical Image Segmentation [49.57907601086494]
Medical image segmentation plays a crucial role in computer-aided diagnosis.
We propose a novel Dual-scale Enhanced and Cross-generative consistency learning framework for semi-supervised medical image (DEC-Seg)
arXiv Detail & Related papers (2023-12-26T12:56:31Z) - Mutual Information-driven Triple Interaction Network for Efficient Image
Dehazing [54.168567276280505]
We propose a novel Mutual Information-driven Triple interaction Network (MITNet) for image dehazing.
The first stage, named amplitude-guided haze removal, aims to recover the amplitude spectrum of the hazy images for haze removal.
The second stage, named phase-guided structure refined, devotes to learning the transformation and refinement of the phase spectrum.
arXiv Detail & Related papers (2023-08-14T08:23:58Z) - Scale-aware Super-resolution Network with Dual Affinity Learning for
Lesion Segmentation from Medical Images [50.76668288066681]
We present a scale-aware super-resolution network to adaptively segment lesions of various sizes from low-resolution medical images.
Our proposed network achieved consistent improvements compared to other state-of-the-art methods.
arXiv Detail & Related papers (2023-05-30T14:25:55Z) - M$^{2}$SNet: Multi-scale in Multi-scale Subtraction Network for Medical
Image Segmentation [73.10707675345253]
We propose a general multi-scale in multi-scale subtraction network (M$2$SNet) to finish diverse segmentation from medical image.
Our method performs favorably against most state-of-the-art methods under different evaluation metrics on eleven datasets of four different medical image segmentation tasks.
arXiv Detail & Related papers (2023-03-20T06:26:49Z) - (M)SLAe-Net: Multi-Scale Multi-Level Attention embedded Network for
Retinal Vessel Segmentation [0.0]
We propose a multi-scale, multi-level attention embedded CNN architecture ((M)SLAe-Net) to address the issue of multi-stage processing.
We do this by extracting features at multiple scales and multiple levels of the network, enabling our model to holistically extracts the local and global features.
Our unique network design and novel D-DPP module with efficient task-specific loss function for thin vessels enabled our model for better cross data performance.
arXiv Detail & Related papers (2021-09-05T14:29:00Z) - Crosslink-Net: Double-branch Encoder Segmentation Network via Fusing
Vertical and Horizontal Convolutions [58.71117402626524]
We present a novel double-branch encoder architecture for medical image segmentation.
Our architecture is inspired by two observations: 1) Since the discrimination of features learned via square convolutional kernels needs to be further improved, we propose to utilize non-square vertical and horizontal convolutional kernels.
The experiments validate the effectiveness of our model on four datasets.
arXiv Detail & Related papers (2021-07-24T02:58:32Z) - w-Net: Dual Supervised Medical Image Segmentation Model with
Multi-Dimensional Attention and Cascade Multi-Scale Convolution [47.56835064059436]
Multi-dimensional attention segmentation model with cascade multi-scale convolution is proposed to predict accurate segmentation for small objects in medical images.
The proposed method is evaluated on three datasets: KiTS19, Pancreas CT of Decathlon-10, and MICCAI 2018 LiTS Challenge.
arXiv Detail & Related papers (2020-11-15T13:54:22Z) - Multi-level Context Gating of Embedded Collective Knowledge for Medical
Image Segmentation [32.96604621259756]
We propose an extension of U-Net for medical image segmentation.
We take full advantages of U-Net, Squeeze and Excitation (SE) block, bi-directional ConvLSTM (BConvLSTM), and the mechanism of dense convolutions.
The proposed model is evaluated on six datasets.
arXiv Detail & Related papers (2020-03-10T12:29:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.