Self-Supervised Surgical Instrument 3D Reconstruction from a Single
Camera Image
- URL: http://arxiv.org/abs/2211.14467v1
- Date: Sat, 26 Nov 2022 03:21:31 GMT
- Title: Self-Supervised Surgical Instrument 3D Reconstruction from a Single
Camera Image
- Authors: Ange Lou, Xing Yao, Ziteng Liu, Jintong Han and Jack Noble
- Abstract summary: An accurate 3D surgical instrument model is a prerequisite for precise predictions of the pose and depth of the instrument.
Recent single-view 3D reconstruction methods are only used in natural object reconstruction.
We propose an end-to-end surgical instrument reconstruction system -- Self-supervised Surgical Instrument Reconstruction.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Surgical instrument tracking is an active research area that can provide
surgeons feedback about the location of their tools relative to anatomy. Recent
tracking methods are mainly divided into two parts: segmentation and object
detection. However, both can only predict 2D information, which is limiting for
application to real-world surgery. An accurate 3D surgical instrument model is
a prerequisite for precise predictions of the pose and depth of the instrument.
Recent single-view 3D reconstruction methods are only used in natural object
reconstruction and do not achieve satisfying reconstruction accuracy without 3D
attribute-level supervision. Further, those methods are not suitable for the
surgical instruments because of their elongated shapes. In this paper, we
firstly propose an end-to-end surgical instrument reconstruction system --
Self-supervised Surgical Instrument Reconstruction (SSIR). With SSIR, we
propose a multi-cycle-consistency strategy to help capture the texture
information from a slim instrument while only requiring a binary instrument
label map. Experiments demonstrate that our approach improves the
reconstruction quality of surgical instruments compared to other
self-supervised methods and achieves promising results.
Related papers
- A Review of 3D Reconstruction Techniques for Deformable Tissues in Robotic Surgery [8.909938295090827]
NeRF-based techniques have recently garnered attention for the ability to reconstruct scenes implicitly.
On the other hand, 3D-GS represents scenes explicitly using 3D Gaussians and projects them onto a 2D plane as a replacement for the complex volume rendering in NeRF.
This work explores and reviews state-of-the-art (SOTA) approaches, discussing their innovations and implementation principles.
arXiv Detail & Related papers (2024-08-08T12:51:23Z) - Creating a Digital Twin of Spinal Surgery: A Proof of Concept [68.37190859183663]
Surgery digitalization is the process of creating a virtual replica of real-world surgery.
We present a proof of concept (PoC) for surgery digitalization that is applied to an ex-vivo spinal surgery.
We employ five RGB-D cameras for dynamic 3D reconstruction of the surgeon, a high-end camera for 3D reconstruction of the anatomy, an infrared stereo camera for surgical instrument tracking, and a laser scanner for 3D reconstruction of the operating room and data fusion.
arXiv Detail & Related papers (2024-03-25T13:09:40Z) - SAMSNeRF: Segment Anything Model (SAM) Guides Dynamic Surgical Scene
Reconstruction by Neural Radiance Field (NeRF) [4.740415113160021]
We propose a novel approach called SAMSNeRF that combines Segment Anything Model (SAM) and Neural Radiance Field (NeRF) techniques.
Our experimental results on public endoscopy surgical videos demonstrate that our approach successfully reconstructs high-fidelity dynamic surgical scenes.
arXiv Detail & Related papers (2023-08-22T20:31:00Z) - Next-generation Surgical Navigation: Marker-less Multi-view 6DoF Pose
Estimation of Surgical Instruments [66.74633676595889]
We present a multi-camera capture setup consisting of static and head-mounted cameras.
Second, we publish a multi-view RGB-D video dataset of ex-vivo spine surgeries, captured in a surgical wet lab and a real operating theatre.
Third, we evaluate three state-of-the-art single-view and multi-view methods for the task of 6DoF pose estimation of surgical instruments.
arXiv Detail & Related papers (2023-05-05T13:42:19Z) - Live image-based neurosurgical guidance and roadmap generation using
unsupervised embedding [53.992124594124896]
We present a method for live image-only guidance leveraging a large data set of annotated neurosurgical videos.
A generated roadmap encodes the common anatomical paths taken in surgeries in the training set.
We trained and evaluated the proposed method with a data set of 166 transsphenoidal adenomectomy procedures.
arXiv Detail & Related papers (2023-03-31T12:52:24Z) - CholecTriplet2022: Show me a tool and tell me the triplet -- an
endoscopic vision challenge for surgical action triplet detection [41.66666272822756]
This paper presents the CholecTriplet2022 challenge, which extends surgical action triplet modeling from recognition to detection.
It includes weakly-supervised bounding box localization of every visible surgical instrument (or tool) as the key actors, and the modeling of each tool-activity in the form of instrument, verb, target> triplet.
arXiv Detail & Related papers (2023-02-13T11:53:14Z) - A unified 3D framework for Organs at Risk Localization and Segmentation
for Radiation Therapy Planning [56.52933974838905]
Current medical workflow requires manual delineation of organs-at-risk (OAR)
In this work, we aim to introduce a unified 3D pipeline for OAR localization-segmentation.
Our proposed framework fully enables the exploitation of 3D context information inherent in medical imaging.
arXiv Detail & Related papers (2022-03-01T17:08:41Z) - hSDB-instrument: Instrument Localization Database for Laparoscopic and
Robotic Surgeries [3.3340414770046856]
The hSDB-instrument dataset consists of instrument localization information from 24 cases of laparoscopic cholecystecomy and 24 cases of robotic gastrectomy.
To reflect the kinematic characteristics of all instruments, they are annotated with head and body parts for laparoscopic instruments, and with head, wrist, and body parts for robotic instruments separately.
arXiv Detail & Related papers (2021-10-24T23:35:37Z) - Stereo Dense Scene Reconstruction and Accurate Laparoscope Localization
for Learning-Based Navigation in Robot-Assisted Surgery [37.14020061063255]
The computation of anatomical information and laparoscope position is a fundamental block of robot-assisted surgical navigation in Minimally Invasive Surgery (MIS)
We propose a learning-driven framework, in which an image-guided laparoscopic localization with 3D reconstructions of complex anatomical structures is hereby achieved.
arXiv Detail & Related papers (2021-10-08T06:12:18Z) - Towards unconstrained joint hand-object reconstruction from RGB videos [81.97694449736414]
Reconstructing hand-object manipulations holds a great potential for robotics and learning from human demonstrations.
We first propose a learning-free fitting approach for hand-object reconstruction which can seamlessly handle two-hand object interactions.
arXiv Detail & Related papers (2021-08-16T12:26:34Z) - AutoSweep: Recovering 3D Editable Objectsfrom a Single Photograph [54.701098964773756]
We aim to recover 3D objects with semantic parts and can be directly edited.
Our work makes an attempt towards recovering two types of primitive-shaped objects, namely, generalized cuboids and generalized cylinders.
Our algorithm can recover high quality 3D models and outperforms existing methods in both instance segmentation and 3D reconstruction.
arXiv Detail & Related papers (2020-05-27T12:16:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.