Predictive linguistic cues for fake news: a societal artificial
intelligence problem
- URL: http://arxiv.org/abs/2211.14505v1
- Date: Sat, 26 Nov 2022 07:50:01 GMT
- Title: Predictive linguistic cues for fake news: a societal artificial
intelligence problem
- Authors: Sandhya Aneja and Nagender Aneja and Ponnurangam Kumaraguru
- Abstract summary: We present linguistic characteristics of media news items to differentiate between fake news and real news using machine learning algorithms.
We use neural networks which mainly control distributional features rather than evidence.
Features unique, negative, positive, and cardinal numbers with high values on the metrics are observed to provide a high area under the curve (AUC) and F1-score.
- Score: 9.40467099889021
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Media news are making a large part of public opinion and, therefore, must not
be fake. News on web sites, blogs, and social media must be analyzed before
being published. In this paper, we present linguistic characteristics of media
news items to differentiate between fake news and real news using machine
learning algorithms. Neural fake news generation, headlines created by
machines, semantic incongruities in text and image captions generated by
machine are other types of fake news problems. These problems use neural
networks which mainly control distributional features rather than evidence. We
propose applying correlation between features set and class, and correlation
among the features to compute correlation attribute evaluation metric and
covariance metric to compute variance of attributes over the news items.
Features unique, negative, positive, and cardinal numbers with high values on
the metrics are observed to provide a high area under the curve (AUC) and
F1-score.
Related papers
- Adapting Fake News Detection to the Era of Large Language Models [48.5847914481222]
We study the interplay between machine-(paraphrased) real news, machine-generated fake news, human-written fake news, and human-written real news.
Our experiments reveal an interesting pattern that detectors trained exclusively on human-written articles can indeed perform well at detecting machine-generated fake news, but not vice versa.
arXiv Detail & Related papers (2023-11-02T08:39:45Z) - Prompt-and-Align: Prompt-Based Social Alignment for Few-Shot Fake News
Detection [50.07850264495737]
"Prompt-and-Align" (P&A) is a novel prompt-based paradigm for few-shot fake news detection.
We show that P&A sets new states-of-the-art for few-shot fake news detection performance by significant margins.
arXiv Detail & Related papers (2023-09-28T13:19:43Z) - It's All in the Embedding! Fake News Detection Using Document Embeddings [0.6091702876917281]
We propose a new approach that uses document embeddings to build multiple models that accurately label news articles as reliable or fake.
We also present a benchmark on different architectures that detect fake news using binary or multi-labeled classification.
arXiv Detail & Related papers (2023-04-16T13:30:06Z) - Unveiling the Hidden Agenda: Biases in News Reporting and Consumption [59.55900146668931]
We build a six-year dataset on the Italian vaccine debate and adopt a Bayesian latent space model to identify narrative and selection biases.
We found a nonlinear relationship between biases and engagement, with higher engagement for extreme positions.
Analysis of news consumption on Twitter reveals common audiences among news outlets with similar ideological positions.
arXiv Detail & Related papers (2023-01-14T18:58:42Z) - Nothing Stands Alone: Relational Fake News Detection with Hypergraph
Neural Networks [49.29141811578359]
We propose to leverage a hypergraph to represent group-wise interaction among news, while focusing on important news relations with its dual-level attention mechanism.
Our approach yields remarkable performance and maintains the high performance even with a small subset of labeled news data.
arXiv Detail & Related papers (2022-12-24T00:19:32Z) - Multiverse: Multilingual Evidence for Fake News Detection [71.51905606492376]
Multiverse is a new feature based on multilingual evidence that can be used for fake news detection.
The hypothesis of the usage of cross-lingual evidence as a feature for fake news detection is confirmed.
arXiv Detail & Related papers (2022-11-25T18:24:17Z) - A Heuristic-driven Uncertainty based Ensemble Framework for Fake News
Detection in Tweets and News Articles [5.979726271522835]
We describe a novel Fake News Detection system that automatically identifies whether a news item is "real" or "fake"
We have used an ensemble model consisting of pre-trained models followed by a statistical feature fusion network.
Our proposed framework have also quantified reliable predictive uncertainty along with proper class output confidence level for the classification task.
arXiv Detail & Related papers (2021-04-05T06:35:30Z) - Causal Understanding of Fake News Dissemination on Social Media [50.4854427067898]
We argue that it is critical to understand what user attributes potentially cause users to share fake news.
In fake news dissemination, confounders can be characterized by fake news sharing behavior that inherently relates to user attributes and online activities.
We propose a principled approach to alleviating selection bias in fake news dissemination.
arXiv Detail & Related papers (2020-10-20T19:37:04Z) - Birds of a Feather Flock Together: Satirical News Detection via Language
Model Differentiation [7.556286423133077]
In satirical news, the lexical and pragmatical attributes of the context are the key factors in amusing the readers.
We propose a method that differentiates the satirical news and true news.
arXiv Detail & Related papers (2020-07-04T18:46:36Z) - SAFE: Similarity-Aware Multi-Modal Fake News Detection [8.572654816871873]
We propose a new method to detect fake news based on its text, images, or their "mismatches"
Such representations of news textual and visual information along with their relationship are jointly learned and used to predict fake news.
We conduct extensive experiments on large-scale real-world data, which demonstrate the effectiveness of the proposed method.
arXiv Detail & Related papers (2020-02-19T02:51:04Z) - Improving Generalizability of Fake News Detection Methods using
Propensity Score Matching [23.968908482333717]
We consider the existence of confounding variables in the features of fake news and use Propensity Score Matching (PSM) to select generalizable features.
Experimental results show that the generalizability of fake news method is significantly better by using PSM than using raw frequency to select features.
arXiv Detail & Related papers (2020-01-28T00:44:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.