Multi-Label Chest X-Ray Classification via Deep Learning
- URL: http://arxiv.org/abs/2211.14929v1
- Date: Sun, 27 Nov 2022 20:27:55 GMT
- Title: Multi-Label Chest X-Ray Classification via Deep Learning
- Authors: Aravind Sasidharan Pillai
- Abstract summary: The goal of this paper is to develop a lightweight solution to detect 14 different chest conditions from an X ray image.
Along with the image features, we are also going to use non-image features available in the data such as X-ray view type, age, gender etc.
Our aim is to improve upon previous work, expand prediction to 14 diseases and provide insight for future chest radiography research.
- Score: 0.0
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: In this era of pandemic, the future of healthcare industry has never been
more exciting. Artificial intelligence and machine learning (AI & ML) present
opportunities to develop solutions that cater for very specific needs within
the industry. Deep learning in healthcare had become incredibly powerful for
supporting clinics and in transforming patient care in general. Deep learning
is increasingly being applied for the detection of clinically important
features in the images beyond what can be perceived by the naked human eye.
Chest X-ray images are one of the most common clinical method for diagnosing a
number of diseases such as pneumonia, lung cancer and many other abnormalities
like lesions and fractures. Proper diagnosis of a disease from X-ray images is
often challenging task for even expert radiologists and there is a growing need
for computerized support systems due to the large amount of information encoded
in X-Ray images. The goal of this paper is to develop a lightweight solution to
detect 14 different chest conditions from an X ray image. Given an X-ray image
as input, our classifier outputs a label vector indicating which of 14 disease
classes does the image fall into. Along with the image features, we are also
going to use non-image features available in the data such as X-ray view type,
age, gender etc. The original study conducted Stanford ML Group is our base
line. Original study focuses on predicting 5 diseases. Our aim is to improve
upon previous work, expand prediction to 14 diseases and provide insight for
future chest radiography research.
Related papers
- Empowering Medical Imaging with Artificial Intelligence: A Review of
Machine Learning Approaches for the Detection, and Segmentation of COVID-19
Using Radiographic and Tomographic Images [2.232567376976564]
Since 2019, the global dissemination of the Coronavirus and its novel strains has resulted in a surge of new infections.
The use of X-ray and computed tomography (CT) imaging techniques is critical in diagnosing and managing COVID-19.
This paper focuses on the methodological approach of using machine learning (ML) to enhance medical imaging for COVID-19 diagnosis.
arXiv Detail & Related papers (2024-01-13T09:17:39Z) - XrayGPT: Chest Radiographs Summarization using Medical Vision-Language
Models [60.437091462613544]
We introduce XrayGPT, a novel conversational medical vision-language model.
It can analyze and answer open-ended questions about chest radiographs.
We generate 217k interactive and high-quality summaries from free-text radiology reports.
arXiv Detail & Related papers (2023-06-13T17:59:59Z) - Act Like a Radiologist: Radiology Report Generation across Anatomical Regions [50.13206214694885]
X-RGen is a radiologist-minded report generation framework across six anatomical regions.
In X-RGen, we seek to mimic the behaviour of human radiologists, breaking them down into four principal phases.
We enhance the recognition capacity of the image encoder by analysing images and reports across various regions.
arXiv Detail & Related papers (2023-05-26T07:12:35Z) - Auto-outlier Fusion Technique for Chest X-ray classification with
Multi-head Attention Mechanism [4.416665886445889]
A chest X-ray is one of the most widely available radiological examinations for diagnosing and detecting various lung illnesses.
The National Institutes of Health (NIH) provides an extensive database, ChestX-ray8 and ChestXray14, to help establish a deep learning community for analysing and predicting lung diseases.
arXiv Detail & Related papers (2022-11-15T09:35:49Z) - Artificial Intelligence for Automatic Detection and Classification
Disease on the X-Ray Images [0.0]
This work presents rapid detection of diseases in the lung using the efficient Deep learning pre-trained RepVGG algorithm.
We are applying Artificial Intelligence technology for automatic highlighted detection of affected areas of people's lungs.
arXiv Detail & Related papers (2022-11-14T03:51:12Z) - Long-Tailed Classification of Thorax Diseases on Chest X-Ray: A New
Benchmark Study [75.05049024176584]
We present a benchmark study of the long-tailed learning problem in the specific domain of thorax diseases on chest X-rays.
We focus on learning from naturally distributed chest X-ray data, optimizing classification accuracy over not only the common "head" classes, but also the rare yet critical "tail" classes.
The benchmark consists of two chest X-ray datasets for 19- and 20-way thorax disease classification, containing classes with as many as 53,000 and as few as 7 labeled training images.
arXiv Detail & Related papers (2022-08-29T04:34:15Z) - A Deep Learning Technique using a Sequence of Follow Up X-Rays for
Disease classification [3.3345134768053635]
The ability to predict lung and heart based diseases using deep learning techniques is central to many researchers.
We present a hypothesis that X-rays of patients included with the follow up history of their most recent three chest X-ray images would perform better in disease classification.
arXiv Detail & Related papers (2022-03-28T19:58:47Z) - Generative Residual Attention Network for Disease Detection [51.60842580044539]
We present a novel approach for disease generation in X-rays using a conditional generative adversarial learning.
We generate a corresponding radiology image in a target domain while preserving the identity of the patient.
We then use the generated X-ray image in the target domain to augment our training to improve the detection performance.
arXiv Detail & Related papers (2021-10-25T14:15:57Z) - Cross-Modal Contrastive Learning for Abnormality Classification and
Localization in Chest X-rays with Radiomics using a Feedback Loop [63.81818077092879]
We propose an end-to-end semi-supervised cross-modal contrastive learning framework for medical images.
We first apply an image encoder to classify the chest X-rays and to generate the image features.
The radiomic features are then passed through another dedicated encoder to act as the positive sample for the image features generated from the same chest X-ray.
arXiv Detail & Related papers (2021-04-11T09:16:29Z) - In-Line Image Transformations for Imbalanced, Multiclass Computer Vision
Classification of Lung Chest X-Rays [91.3755431537592]
This study aims to leverage a body of literature in order to apply image transformations that would serve to balance the lack of COVID-19 LCXR data.
Deep learning techniques such as convolutional neural networks (CNNs) are able to select features that distinguish between healthy and disease states.
This study utilizes a simple CNN architecture for high-performance multiclass LCXR classification at 94 percent accuracy.
arXiv Detail & Related papers (2021-04-06T02:01:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.