Optimal Sparse Regression Trees
- URL: http://arxiv.org/abs/2211.14980v3
- Date: Mon, 10 Apr 2023 01:21:11 GMT
- Title: Optimal Sparse Regression Trees
- Authors: Rui Zhang, Rui Xin, Margo Seltzer, Cynthia Rudin
- Abstract summary: This work proposes a dynamic-programming-with-bounds approach to the construction of provably-optimal sparse regression trees.
We leverage a novel lower bound based on an optimal solution to the k-Means clustering algorithm in 1-dimension over the set of labels.
- Score: 24.03491277969824
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Regression trees are one of the oldest forms of AI models, and their
predictions can be made without a calculator, which makes them broadly useful,
particularly for high-stakes applications. Within the large literature on
regression trees, there has been little effort towards full provable
optimization, mainly due to the computational hardness of the problem. This
work proposes a dynamic-programming-with-bounds approach to the construction of
provably-optimal sparse regression trees. We leverage a novel lower bound based
on an optimal solution to the k-Means clustering algorithm in 1-dimension over
the set of labels. We are often able to find optimal sparse trees in seconds,
even for challenging datasets that involve large numbers of samples and
highly-correlated features.
Related papers
- An improved column-generation-based matheuristic for learning
classification trees [9.07661731728456]
Decision trees are highly interpretable models for solving classification problems in machine learning (ML)
Standard ML algorithms for training decision trees are fast but generate suboptimal trees in terms of accuracy.
citefirat 2020column proposed a column-generation-based approach for learning decision trees.
arXiv Detail & Related papers (2023-08-22T14:43:36Z) - Distributional Adaptive Soft Regression Trees [0.0]
This article proposes a new type of a distributional regression tree using a multivariate soft split rule.
One great advantage of the soft split is that smooth high-dimensional functions can be estimated with only one tree.
We show by means of extensive simulation studies that the algorithm has excellent properties and outperforms various benchmark methods.
arXiv Detail & Related papers (2022-10-19T08:59:02Z) - Tree ensemble kernels for Bayesian optimization with known constraints
over mixed-feature spaces [54.58348769621782]
Tree ensembles can be well-suited for black-box optimization tasks such as algorithm tuning and neural architecture search.
Two well-known challenges in using tree ensembles for black-box optimization are (i) effectively quantifying model uncertainty for exploration and (ii) optimizing over the piece-wise constant acquisition function.
Our framework performs as well as state-of-the-art methods for unconstrained black-box optimization over continuous/discrete features and outperforms competing methods for problems combining mixed-variable feature spaces and known input constraints.
arXiv Detail & Related papers (2022-07-02T16:59:37Z) - bsnsing: A decision tree induction method based on recursive optimal
boolean rule composition [2.28438857884398]
This paper proposes a new mixed-integer programming (MIP) formulation to optimize split rule selection in the decision tree induction process.
It develops an efficient search solver that is able to solve practical instances faster than commercial solvers.
arXiv Detail & Related papers (2022-05-30T17:13:57Z) - A cautionary tale on fitting decision trees to data from additive
models: generalization lower bounds [9.546094657606178]
We study the generalization performance of decision trees with respect to different generative regression models.
This allows us to elicit their inductive bias, that is, the assumptions the algorithms make (or do not make) to generalize to new data.
We prove a sharp squared error generalization lower bound for a large class of decision tree algorithms fitted to sparse additive models.
arXiv Detail & Related papers (2021-10-18T21:22:40Z) - Towards Optimally Efficient Tree Search with Deep Learning [76.64632985696237]
This paper investigates the classical integer least-squares problem which estimates signals integer from linear models.
The problem is NP-hard and often arises in diverse applications such as signal processing, bioinformatics, communications and machine learning.
We propose a general hyper-accelerated tree search (HATS) algorithm by employing a deep neural network to estimate the optimal estimation for the underlying simplified memory-bounded A* algorithm.
arXiv Detail & Related papers (2021-01-07T08:00:02Z) - Online Model Selection for Reinforcement Learning with Function
Approximation [50.008542459050155]
We present a meta-algorithm that adapts to the optimal complexity with $tildeO(L5/6 T2/3)$ regret.
We also show that the meta-algorithm automatically admits significantly improved instance-dependent regret bounds.
arXiv Detail & Related papers (2020-11-19T10:00:54Z) - MurTree: Optimal Classification Trees via Dynamic Programming and Search [61.817059565926336]
We present a novel algorithm for learning optimal classification trees based on dynamic programming and search.
Our approach uses only a fraction of the time required by the state-of-the-art and can handle datasets with tens of thousands of instances.
arXiv Detail & Related papers (2020-07-24T17:06:55Z) - Generalized and Scalable Optimal Sparse Decision Trees [56.35541305670828]
We present techniques that produce optimal decision trees over a variety of objectives.
We also introduce a scalable algorithm that produces provably optimal results in the presence of continuous variables.
arXiv Detail & Related papers (2020-06-15T19:00:11Z) - ENTMOOT: A Framework for Optimization over Ensemble Tree Models [57.98561336670884]
ENTMOOT is a framework for integrating tree models into larger optimization problems.
We show how ENTMOOT allows a simple integration of tree models into decision-making and black-box optimization.
arXiv Detail & Related papers (2020-03-10T14:34:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.