Federated Learning for 5G Base Station Traffic Forecasting
- URL: http://arxiv.org/abs/2211.15220v2
- Date: Sat, 26 Aug 2023 12:52:10 GMT
- Title: Federated Learning for 5G Base Station Traffic Forecasting
- Authors: Vasileios Perifanis, Nikolaos Pavlidis, Remous-Aris Koutsiamanis,
Pavlos S. Efraimidis
- Abstract summary: We investigate the efficacy of distributed learning applied to raw base station LTE data for time-series forecasting.
Our results show that the learning architectures adapted to the federated setting yield equivalent prediction error to the centralized setting.
In addition, preprocessing techniques on base stations enhance forecasting accuracy, while advanced federated aggregators do not surpass simpler approaches.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Cellular traffic prediction is of great importance on the path of enabling 5G
mobile networks to perform intelligent and efficient infrastructure planning
and management. However, available data are limited to base station logging
information. Hence, training methods for generating high-quality predictions
that can generalize to new observations across diverse parties are in demand.
Traditional approaches require collecting measurements from multiple base
stations, transmitting them to a central entity and conducting machine learning
operations using the acquire data. The dissemination of local observations
raises concerns regarding confidentiality and performance, which impede the
applicability of machine learning techniques. Although various distributed
learning methods have been proposed to address this issue, their application to
traffic prediction remains highly unexplored. In this work, we investigate the
efficacy of federated learning applied to raw base station LTE data for
time-series forecasting. We evaluate one-step predictions using five different
neural network architectures trained with a federated setting on
non-identically distributed data. Our results show that the learning
architectures adapted to the federated setting yield equivalent prediction
error to the centralized setting. In addition, preprocessing techniques on base
stations enhance forecasting accuracy, while advanced federated aggregators do
not surpass simpler approaches. Simulations considering the environmental
impact suggest that federated learning holds the potential for reducing carbon
emissions and energy consumption. Finally, we consider a large-scale scenario
with synthetic data and demonstrate that federated learning reduces the
computational and communication costs compared to centralized settings.
Related papers
- Towards Energy-Aware Federated Traffic Prediction for Cellular Networks [2.360352205004026]
We propose a novel sustainability indicator that allows assessing the feasibility of machine learning (ML) models.
We evaluate state-of-the-art deep learning (DL) architectures in a federated scenario using real-world measurements from base station (BS) sites in the area of Barcelona, Spain.
Our findings indicate that larger ML models achieve marginally improved performance but have a significant environmental impact in terms of carbon footprint.
arXiv Detail & Related papers (2023-09-19T14:28:09Z) - Tackling Computational Heterogeneity in FL: A Few Theoretical Insights [68.8204255655161]
We introduce and analyse a novel aggregation framework that allows for formalizing and tackling computational heterogeneous data.
Proposed aggregation algorithms are extensively analyzed from a theoretical, and an experimental prospective.
arXiv Detail & Related papers (2023-07-12T16:28:21Z) - Online Spatio-Temporal Correlation-Based Federated Learning for Traffic
Flow Forecasting [11.253575460227127]
In this paper, we perform the first study of forecasting traffic flow adopting Online Learning (OL) manner in FL framework.
We then propose a novel prediction method named Online Spatio-Temporal Correlation-based Federated Learning (FedOSTC) to guarantee performance gains regardless of traffic fluctuation.
arXiv Detail & Related papers (2023-02-17T02:37:36Z) - Online Data Selection for Federated Learning with Limited Storage [53.46789303416799]
Federated Learning (FL) has been proposed to achieve distributed machine learning among networked devices.
The impact of on-device storage on the performance of FL is still not explored.
In this work, we take the first step to consider the online data selection for FL with limited on-device storage.
arXiv Detail & Related papers (2022-09-01T03:27:33Z) - Local Learning Matters: Rethinking Data Heterogeneity in Federated
Learning [61.488646649045215]
Federated learning (FL) is a promising strategy for performing privacy-preserving, distributed learning with a network of clients (i.e., edge devices)
arXiv Detail & Related papers (2021-11-28T19:03:39Z) - Communication-Efficient Hierarchical Federated Learning for IoT
Heterogeneous Systems with Imbalanced Data [42.26599494940002]
Federated learning (FL) is a distributed learning methodology that allows multiple nodes to cooperatively train a deep learning model.
This paper studies the potential of hierarchical FL in IoT heterogeneous systems.
It proposes an optimized solution for user assignment and resource allocation on multiple edge nodes.
arXiv Detail & Related papers (2021-07-14T08:32:39Z) - Edge-assisted Democratized Learning Towards Federated Analytics [67.44078999945722]
We show the hierarchical learning structure of the proposed edge-assisted democratized learning mechanism, namely Edge-DemLearn.
We also validate Edge-DemLearn as a flexible model training mechanism to build a distributed control and aggregation methodology in regions.
arXiv Detail & Related papers (2020-12-01T11:46:03Z) - Privacy-preserving Traffic Flow Prediction: A Federated Learning
Approach [61.64006416975458]
We propose a privacy-preserving machine learning technique named Federated Learning-based Gated Recurrent Unit neural network algorithm (FedGRU) for traffic flow prediction.
FedGRU differs from current centralized learning methods and updates universal learning models through a secure parameter aggregation mechanism.
It is shown that FedGRU's prediction accuracy is 90.96% higher than the advanced deep learning models.
arXiv Detail & Related papers (2020-03-19T13:07:49Z) - Deep Learning for Ultra-Reliable and Low-Latency Communications in 6G
Networks [84.2155885234293]
We first summarize how to apply data-driven supervised deep learning and deep reinforcement learning in URLLC.
To address these open problems, we develop a multi-level architecture that enables device intelligence, edge intelligence, and cloud intelligence for URLLC.
arXiv Detail & Related papers (2020-02-22T14:38:11Z) - Federated Learning with Cooperating Devices: A Consensus Approach for
Massive IoT Networks [8.456633924613456]
Federated learning (FL) is emerging as a new paradigm to train machine learning models in distributed systems.
The paper proposes a fully distributed (or server-less) learning approach: the proposed FL algorithms leverage the cooperation of devices that perform data operations inside the network.
The approach lays the groundwork for integration of FL within 5G and beyond networks characterized by decentralized connectivity and computing.
arXiv Detail & Related papers (2019-12-27T15:16:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.