Discovering Unsupervised Behaviours from Full-State Trajectories
- URL: http://arxiv.org/abs/2211.15451v1
- Date: Tue, 22 Nov 2022 16:57:52 GMT
- Title: Discovering Unsupervised Behaviours from Full-State Trajectories
- Authors: Luca Grillotti, Antoine Cully
- Abstract summary: We propose an analysis of Autonomous Robots Realising their Abilities; a Quality-Diversity algorithm that autonomously finds behavioural characterisations.
We evaluate this approach on a simulated robotic environment, where the robot has to autonomously discover its abilities from its full-state trajectories.
More specifically, the analysed approach autonomously finds policies that make the robot move to diverse positions, but also utilise its legs in diverse ways, and even perform half-rolls.
- Score: 1.827510863075184
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Improving open-ended learning capabilities is a promising approach to enable
robots to face the unbounded complexity of the real-world. Among existing
methods, the ability of Quality-Diversity algorithms to generate large
collections of diverse and high-performing skills is instrumental in this
context. However, most of those algorithms rely on a hand-coded behavioural
descriptor to characterise the diversity, hence requiring prior knowledge about
the considered tasks. In this work, we propose an additional analysis of
Autonomous Robots Realising their Abilities; a Quality-Diversity algorithm that
autonomously finds behavioural characterisations. We evaluate this approach on
a simulated robotic environment, where the robot has to autonomously discover
its abilities from its full-state trajectories. All algorithms were applied to
three tasks: navigation, moving forward with a high velocity, and performing
half-rolls. The experimental results show that the algorithm under study
discovers autonomously collections of solutions that are diverse with respect
to all tasks. More specifically, the analysed approach autonomously finds
policies that make the robot move to diverse positions, but also utilise its
legs in diverse ways, and even perform half-rolls.
Related papers
- Offline Imitation Learning Through Graph Search and Retrieval [57.57306578140857]
Imitation learning is a powerful machine learning algorithm for a robot to acquire manipulation skills.
We propose GSR, a simple yet effective algorithm that learns from suboptimal demonstrations through Graph Search and Retrieval.
GSR can achieve a 10% to 30% higher success rate and over 30% higher proficiency compared to baselines.
arXiv Detail & Related papers (2024-07-22T06:12:21Z) - Interactive Multi-Robot Flocking with Gesture Responsiveness and Musical Accompaniment [0.7659052547635159]
This work presents a compelling multi-robot task in which the main aim is to enthrall and interest.
In this task, the goal is for a human to be drawn to move alongside and participate in a dynamic, expressive robot flock.
Towards this aim, the research team created algorithms for robot movements and engaging interaction modes such as gestures and sound.
arXiv Detail & Related papers (2024-03-30T18:16:28Z) - Practice Makes Perfect: Planning to Learn Skill Parameter Policies [34.51008914846429]
In this work, we focus on the active learning problem of choosing which skills to practice to maximize expected future task success.
We propose that the robot should estimate the competence of each skill, extrapolate the competence, and situate the skill in the task distribution through competence-aware planning.
This approach is implemented within a fully autonomous system where the robot repeatedly plans, practices, and learns without any environment resets.
arXiv Detail & Related papers (2024-02-22T23:58:26Z) - RoboGen: Towards Unleashing Infinite Data for Automated Robot Learning via Generative Simulation [68.70755196744533]
RoboGen is a generative robotic agent that automatically learns diverse robotic skills at scale via generative simulation.
Our work attempts to extract the extensive and versatile knowledge embedded in large-scale models and transfer them to the field of robotics.
arXiv Detail & Related papers (2023-11-02T17:59:21Z) - RObotic MAnipulation Network (ROMAN) $\unicode{x2013}$ Hybrid
Hierarchical Learning for Solving Complex Sequential Tasks [70.69063219750952]
We present a Hybrid Hierarchical Learning framework, the Robotic Manipulation Network (ROMAN)
ROMAN achieves task versatility and robust failure recovery by integrating behavioural cloning, imitation learning, and reinforcement learning.
Experimental results show that by orchestrating and activating these specialised manipulation experts, ROMAN generates correct sequential activations for accomplishing long sequences of sophisticated manipulation tasks.
arXiv Detail & Related papers (2023-06-30T20:35:22Z) - Bridging Active Exploration and Uncertainty-Aware Deployment Using
Probabilistic Ensemble Neural Network Dynamics [11.946807588018595]
This paper presents a unified model-based reinforcement learning framework that bridges active exploration and uncertainty-aware deployment.
The two opposing tasks of exploration and deployment are optimized through state-of-the-art sampling-based MPC.
We conduct experiments on both autonomous vehicles and wheeled robots, showing promising results for both exploration and deployment.
arXiv Detail & Related papers (2023-05-20T17:20:12Z) - Relevance-guided Unsupervised Discovery of Abilities with
Quality-Diversity Algorithms [1.827510863075184]
We introduce Relevance-guided Unsupervised Discovery of Abilities; a Quality-Diversity algorithm that autonomously finds a behavioural characterisation tailored to the task at hand.
We evaluate our approach on a simulated robotic environment, where the robot has to autonomously discover its abilities based on its full sensory data.
arXiv Detail & Related papers (2022-04-21T00:29:38Z) - Divide & Conquer Imitation Learning [75.31752559017978]
Imitation Learning can be a powerful approach to bootstrap the learning process.
We present a novel algorithm designed to imitate complex robotic tasks from the states of an expert trajectory.
We show that our method imitates a non-holonomic navigation task and scales to a complex simulated robotic manipulation task with very high sample efficiency.
arXiv Detail & Related papers (2022-04-15T09:56:50Z) - Lifelong Robotic Reinforcement Learning by Retaining Experiences [61.79346922421323]
Many multi-task reinforcement learning efforts assume the robot can collect data from all tasks at all times.
In this work, we study a practical sequential multi-task RL problem motivated by the practical constraints of physical robotic systems.
We derive an approach that effectively leverages the data and policies learned for previous tasks to cumulatively grow the robot's skill-set.
arXiv Detail & Related papers (2021-09-19T18:00:51Z) - Unsupervised Behaviour Discovery with Quality-Diversity Optimisation [1.0152838128195467]
Quality-Diversity algorithms refer to a class of evolutionary algorithms designed to find a collection of diverse and high-performing solutions to a given problem.
In robotics, such algorithms can be used for generating a collection of controllers covering most of the possible behaviours of a robot.
In this paper, we introduce: Autonomous Robots Realising their Abilities, an algorithm that uses a dimensionality reduction technique to automatically learn behavioural descriptors.
arXiv Detail & Related papers (2021-06-10T10:40:18Z) - Scalable Multi-Task Imitation Learning with Autonomous Improvement [159.9406205002599]
We build an imitation learning system that can continuously improve through autonomous data collection.
We leverage the robot's own trials as demonstrations for tasks other than the one that the robot actually attempted.
In contrast to prior imitation learning approaches, our method can autonomously collect data with sparse supervision for continuous improvement.
arXiv Detail & Related papers (2020-02-25T18:56:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.