Lifelong Embedding Learning and Transfer for Growing Knowledge Graphs
- URL: http://arxiv.org/abs/2211.15845v2
- Date: Mon, 10 Apr 2023 02:32:18 GMT
- Title: Lifelong Embedding Learning and Transfer for Growing Knowledge Graphs
- Authors: Yuanning Cui and Yuxin Wang and Zequn Sun and Wenqiang Liu and Yiqiao
Jiang and Kexin Han and Wei Hu
- Abstract summary: Existing knowledge graph embedding models primarily focus on static KGs.
New facts and previously unseen entities and relations continually emerge, necessitating an embedding model that can quickly learn and transfer new knowledge through growth.
We consider knowledge transfer and retention of the learning on growing snapshots of a KG without having to learn embeddings from scratch.
The proposed model includes a masked KG autoencoder for embedding learning and update, with an embedding transfer strategy to inject the learned knowledge into the new entity and relation embeddings, and an embedding regularization method to avoid catastrophic forgetting.
- Score: 22.88552158340435
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Existing knowledge graph (KG) embedding models have primarily focused on
static KGs. However, real-world KGs do not remain static, but rather evolve and
grow in tandem with the development of KG applications. Consequently, new facts
and previously unseen entities and relations continually emerge, necessitating
an embedding model that can quickly learn and transfer new knowledge through
growth. Motivated by this, we delve into an expanding field of KG embedding in
this paper, i.e., lifelong KG embedding. We consider knowledge transfer and
retention of the learning on growing snapshots of a KG without having to learn
embeddings from scratch. The proposed model includes a masked KG autoencoder
for embedding learning and update, with an embedding transfer strategy to
inject the learned knowledge into the new entity and relation embeddings, and
an embedding regularization method to avoid catastrophic forgetting. To
investigate the impacts of different aspects of KG growth, we construct four
datasets to evaluate the performance of lifelong KG embedding. Experimental
results show that the proposed model outperforms the state-of-the-art inductive
and lifelong embedding baselines.
Related papers
- KG-FIT: Knowledge Graph Fine-Tuning Upon Open-World Knowledge [63.19837262782962]
Knowledge Graph Embedding (KGE) techniques are crucial in learning compact representations of entities and relations within a knowledge graph.
This study introduces KG-FIT, which builds a semantically coherent hierarchical structure of entity clusters.
Experiments on the benchmark datasets FB15K-237, YAGO3-10, and PrimeKG demonstrate the superiority of KG-FIT over state-of-the-art pre-trained language model-based methods.
arXiv Detail & Related papers (2024-05-26T03:04:26Z) - Recognizing Unseen Objects via Multimodal Intensive Knowledge Graph
Propagation [68.13453771001522]
We propose a multimodal intensive ZSL framework that matches regions of images with corresponding semantic embeddings.
We conduct extensive experiments and evaluate our model on large-scale real-world data.
arXiv Detail & Related papers (2023-06-14T13:07:48Z) - Joint Pre-training and Local Re-training: Transferable Representation
Learning on Multi-source Knowledge Graphs [17.78174810566248]
We pre-train a large teacher KG embedding model over linked multi-source KGs and distill knowledge to train a student model for a task-specific KG.
We conduct extensive experiments to demonstrate the effectiveness and efficiency of our framework.
arXiv Detail & Related papers (2023-06-05T08:11:59Z) - Collective Knowledge Graph Completion with Mutual Knowledge Distillation [11.922522192224145]
We study the problem of multi-KG completion, where we focus on maximizing the collective knowledge from different KGs.
We propose a novel method called CKGC-CKD that uses relation-aware graph convolutional network encoder models on both individual KGs and a large fused KG.
Experimental results on multilingual datasets have shown that our method outperforms all state-of-the-art models in the KGC task.
arXiv Detail & Related papers (2023-05-25T09:49:40Z) - BertNet: Harvesting Knowledge Graphs with Arbitrary Relations from
Pretrained Language Models [65.51390418485207]
We propose a new approach of harvesting massive KGs of arbitrary relations from pretrained LMs.
With minimal input of a relation definition, the approach efficiently searches in the vast entity pair space to extract diverse accurate knowledge.
We deploy the approach to harvest KGs of over 400 new relations from different LMs.
arXiv Detail & Related papers (2022-06-28T19:46:29Z) - Meta-Learning Based Knowledge Extrapolation for Knowledge Graphs in the
Federated Setting [43.85991094675398]
We study the knowledge extrapolation problem to embed new components (i.e., entities and relations) that come with emerging knowledge graphs (KGs) in the federated setting.
In this problem, a model trained on an existing KG needs to embed an emerging KG with unseen entities and relations.
We introduce the meta-learning setting, where a set of tasks are sampled on the existing KG to mimic the link prediction task on the emerging KG.
Based on sampled tasks, we meta-train a graph neural network framework that can construct features for unseen components based on structural information and output embeddings for them.
arXiv Detail & Related papers (2022-05-10T06:27:32Z) - Standing on the Shoulders of Predecessors: Meta-Knowledge Transfer for
Knowledge Graphs [8.815143812846392]
We call such knowledge meta-knowledge, and refer to the problem of transferring meta-knowledge from constructed (source) KGs to new (target) KGs.
MorsE represents the meta-knowledge via Knowledge Graph Embedding and learns the meta-knowledge by Meta-Learning.
MorsE is able to learn and transfer meta-knowledge between KGs effectively, and outperforms existing state-of-the-art models.
arXiv Detail & Related papers (2021-10-27T04:57:16Z) - Learning Intents behind Interactions with Knowledge Graph for
Recommendation [93.08709357435991]
Knowledge graph (KG) plays an increasingly important role in recommender systems.
Existing GNN-based models fail to identify user-item relation at a fine-grained level of intents.
We propose a new model, Knowledge Graph-based Intent Network (KGIN)
arXiv Detail & Related papers (2021-02-14T03:21:36Z) - Multilingual Knowledge Graph Completion via Ensemble Knowledge Transfer [43.453915033312114]
Predicting missing facts in a knowledge graph (KG) is a crucial task in knowledge base construction and reasoning.
We propose KEnS, a novel framework for embedding learning and ensemble knowledge transfer across a number of language-specific KGs.
Experiments on five real-world language-specific KGs show that KEnS consistently improves state-of-the-art methods on KG completion.
arXiv Detail & Related papers (2020-10-07T04:54:03Z) - All About Knowledge Graphs for Actions [82.39684757372075]
We propose a better understanding of knowledge graphs (KGs) that can be utilized for zero-shot and few-shot action recognition.
We study three different construction mechanisms for KGs: action embeddings, action-object embeddings, visual embeddings.
We present extensive analysis of the impact of different KGs on different experimental setups.
arXiv Detail & Related papers (2020-08-28T01:44:01Z) - Generative Adversarial Zero-Shot Relational Learning for Knowledge
Graphs [96.73259297063619]
We consider a novel formulation, zero-shot learning, to free this cumbersome curation.
For newly-added relations, we attempt to learn their semantic features from their text descriptions.
We leverage Generative Adrial Networks (GANs) to establish the connection between text and knowledge graph domain.
arXiv Detail & Related papers (2020-01-08T01:19:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.