Kinematic-aware Hierarchical Attention Network for Human Pose Estimation
in Videos
- URL: http://arxiv.org/abs/2211.15868v1
- Date: Tue, 29 Nov 2022 01:46:11 GMT
- Title: Kinematic-aware Hierarchical Attention Network for Human Pose Estimation
in Videos
- Authors: Kyung-Min Jin, Byoung-Sung Lim, Gun-Hee Lee, Tae-Kyung Kang,
Seong-Whan Lee
- Abstract summary: Previous-based human pose estimation methods have shown promising results by leveraging features of consecutive frames.
Most approaches compromise accuracy to jitter and do not comprehend the temporal aspects of human motion.
We design an architecture that exploits kinematic keypoint features.
- Score: 17.831839654593452
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Previous video-based human pose estimation methods have shown promising
results by leveraging aggregated features of consecutive frames. However, most
approaches compromise accuracy to mitigate jitter or do not sufficiently
comprehend the temporal aspects of human motion. Furthermore, occlusion
increases uncertainty between consecutive frames, which results in unsmooth
results. To address these issues, we design an architecture that exploits the
keypoint kinematic features with the following components. First, we
effectively capture the temporal features by leveraging individual keypoint's
velocity and acceleration. Second, the proposed hierarchical transformer
encoder aggregates spatio-temporal dependencies and refines the 2D or 3D input
pose estimated from existing estimators. Finally, we provide an online
cross-supervision between the refined input pose generated from the encoder and
the final pose from our decoder to enable joint optimization. We demonstrate
comprehensive results and validate the effectiveness of our model in various
tasks: 2D pose estimation, 3D pose estimation, body mesh recovery, and sparsely
annotated multi-human pose estimation. Our code is available at
https://github.com/KyungMinJin/HANet.
Related papers
- UPose3D: Uncertainty-Aware 3D Human Pose Estimation with Cross-View and Temporal Cues [55.69339788566899]
UPose3D is a novel approach for multi-view 3D human pose estimation.
It improves robustness and flexibility without requiring direct 3D annotations.
arXiv Detail & Related papers (2024-04-23T00:18:00Z) - OTPose: Occlusion-Aware Transformer for Pose Estimation in
Sparsely-Labeled Videos [21.893572076171527]
We propose a method that leverages an attention mask for occluded joints and encodes temporal dependency between frames using transformers.
We achieve state-of-the-art pose estimation results for PoseTrack 2017 and PoseTrack 2018 datasets.
arXiv Detail & Related papers (2022-07-20T08:06:06Z) - Non-Local Latent Relation Distillation for Self-Adaptive 3D Human Pose
Estimation [63.199549837604444]
3D human pose estimation approaches leverage different forms of strong (2D/3D pose) or weak (multi-view or depth) paired supervision.
We cast 3D pose learning as a self-supervised adaptation problem that aims to transfer the task knowledge from a labeled source domain to a completely unpaired target.
We evaluate different self-adaptation settings and demonstrate state-of-the-art 3D human pose estimation performance on standard benchmarks.
arXiv Detail & Related papers (2022-04-05T03:52:57Z) - MixSTE: Seq2seq Mixed Spatio-Temporal Encoder for 3D Human Pose
Estimation in Video [75.23812405203778]
Recent solutions have been introduced to estimate 3D human pose from 2D keypoint sequence by considering body joints among all frames globally to learn-temporal correlation.
We propose Mix Mix, which has temporal transformer block to separately model the temporal motion of each joint and a transformer block inter-joint spatial correlation.
In addition, the network output is extended from the central frame to entire frames of input video, improving the coherence between the input and output benchmarks.
arXiv Detail & Related papers (2022-03-02T04:20:59Z) - Encoder-decoder with Multi-level Attention for 3D Human Shape and Pose
Estimation [61.98690211671168]
We propose a Multi-level Attention-Decoder Network (MAED) to model multi-level attentions in a unified framework.
With the training set of 3DPW, MAED outperforms previous state-of-the-art methods by 6.2, 7.2, and 2.4 mm of PA-MPJPE.
arXiv Detail & Related papers (2021-09-06T09:06:17Z) - Improving Robustness and Accuracy via Relative Information Encoding in
3D Human Pose Estimation [59.94032196768748]
We propose a relative information encoding method that yields positional and temporal enhanced representations.
Our method outperforms state-of-the-art methods on two public datasets.
arXiv Detail & Related papers (2021-07-29T14:12:19Z) - Self-Attentive 3D Human Pose and Shape Estimation from Videos [82.63503361008607]
We present a video-based learning algorithm for 3D human pose and shape estimation.
We exploit temporal information in videos and propose a self-attention module.
We evaluate our method on the 3DPW, MPI-INF-3DHP, and Human3.6M datasets.
arXiv Detail & Related papers (2021-03-26T00:02:19Z) - Deep Dual Consecutive Network for Human Pose Estimation [44.41818683253614]
We propose a novel multi-frame human pose estimation framework, leveraging abundant temporal cues between video frames to facilitate keypoint detection.
Our method ranks No.1 in the Multi-frame Person Pose Challenge Challenge on the large-scale benchmark datasets PoseTrack 2017 and PoseTrack 2018.
arXiv Detail & Related papers (2021-03-12T13:11:27Z) - Multi-Scale Networks for 3D Human Pose Estimation with Inference Stage
Optimization [33.02708860641971]
Estimating 3D human poses from a monocular video is still a challenging task.
Many existing methods drop when the target person is cluded by other objects, or the motion is too fast/slow relative to the scale and speed of the training data.
We introduce atemporal-temporal network for robust 3D human pose estimation.
arXiv Detail & Related papers (2020-10-13T15:24:28Z) - A Graph Attention Spatio-temporal Convolutional Network for 3D Human
Pose Estimation in Video [7.647599484103065]
We improve the learning of constraints in human skeleton by modeling local global spatial information via attention mechanisms.
Our approach effectively mitigates depth ambiguity and self-occlusion, generalizes to half upper body estimation, and achieves competitive performance on 2D-to-3D video pose estimation.
arXiv Detail & Related papers (2020-03-11T14:54:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.