Transfer Learning with Uncertainty Quantification: Random Effect
Calibration of Source to Target (RECaST)
- URL: http://arxiv.org/abs/2211.16557v1
- Date: Tue, 29 Nov 2022 19:39:47 GMT
- Title: Transfer Learning with Uncertainty Quantification: Random Effect
Calibration of Source to Target (RECaST)
- Authors: Jimmy Hickey, Jonathan P. Williams, Emily C. Hector
- Abstract summary: We develop a statistical framework for model predictions based on transfer learning, called RECaST.
We mathematically and empirically demonstrate the validity of our RECaST approach for transfer learning between linear models.
We examine our method's performance in a simulation study and in an application to real hospital data.
- Score: 1.8047694351309207
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Transfer learning uses a data model, trained to make predictions or
inferences on data from one population, to make reliable predictions or
inferences on data from another population. Most existing transfer learning
approaches are based on fine-tuning pre-trained neural network models, and fail
to provide crucial uncertainty quantification. We develop a statistical
framework for model predictions based on transfer learning, called RECaST. The
primary mechanism is a Cauchy random effect that recalibrates a source model to
a target population; we mathematically and empirically demonstrate the validity
of our RECaST approach for transfer learning between linear models, in the
sense that prediction sets will achieve their nominal stated coverage, and we
numerically illustrate the method's robustness to asymptotic approximations for
nonlinear models. Whereas many existing techniques are built on particular
source models, RECaST is agnostic to the choice of source model. For example,
our RECaST transfer learning approach can be applied to a continuous or
discrete data model with linear or logistic regression, deep neural network
architectures, etc. Furthermore, RECaST provides uncertainty quantification for
predictions, which is mostly absent in the literature. We examine our method's
performance in a simulation study and in an application to real hospital data.
Related papers
- Source-Free Domain-Invariant Performance Prediction [68.39031800809553]
We propose a source-free approach centred on uncertainty-based estimation, using a generative model for calibration in the absence of source data.
Our experiments on benchmark object recognition datasets reveal that existing source-based methods fall short with limited source sample availability.
Our approach significantly outperforms the current state-of-the-art source-free and source-based methods, affirming its effectiveness in domain-invariant performance estimation.
arXiv Detail & Related papers (2024-08-05T03:18:58Z) - How Inverse Conditional Flows Can Serve as a Substitute for Distributional Regression [2.9873759776815527]
We propose a framework for distributional regression using inverse flow transformations (DRIFT)
DRIFT covers both interpretable statistical models and flexible neural networks opening up new avenues in both statistical modeling and deep learning.
arXiv Detail & Related papers (2024-05-08T21:19:18Z) - Towards Theoretical Understandings of Self-Consuming Generative Models [56.84592466204185]
This paper tackles the emerging challenge of training generative models within a self-consuming loop.
We construct a theoretical framework to rigorously evaluate how this training procedure impacts the data distributions learned by future models.
We present results for kernel density estimation, delivering nuanced insights such as the impact of mixed data training on error propagation.
arXiv Detail & Related papers (2024-02-19T02:08:09Z) - Kalman Filter for Online Classification of Non-Stationary Data [101.26838049872651]
In Online Continual Learning (OCL) a learning system receives a stream of data and sequentially performs prediction and training steps.
We introduce a probabilistic Bayesian online learning model by using a neural representation and a state space model over the linear predictor weights.
In experiments in multi-class classification we demonstrate the predictive ability of the model and its flexibility to capture non-stationarity.
arXiv Detail & Related papers (2023-06-14T11:41:42Z) - Surrogate uncertainty estimation for your time series forecasting black-box: learn when to trust [2.0393477576774752]
Our research introduces a method for uncertainty estimation.
It enhances any base regression model with reasonable uncertainty estimates.
Using various time-series forecasting data, we found that our surrogate model-based technique delivers significantly more accurate confidence intervals.
arXiv Detail & Related papers (2023-02-06T14:52:56Z) - Leveraging Unlabeled Data to Predict Out-of-Distribution Performance [63.740181251997306]
Real-world machine learning deployments are characterized by mismatches between the source (training) and target (test) distributions.
In this work, we investigate methods for predicting the target domain accuracy using only labeled source data and unlabeled target data.
We propose Average Thresholded Confidence (ATC), a practical method that learns a threshold on the model's confidence, predicting accuracy as the fraction of unlabeled examples.
arXiv Detail & Related papers (2022-01-11T23:01:12Z) - Bayesian Imaging With Data-Driven Priors Encoded by Neural Networks:
Theory, Methods, and Algorithms [2.266704469122763]
This paper proposes a new methodology for performing Bayesian inference in imaging inverse problems where the prior knowledge is available in the form of training data.
We establish the existence and well-posedness of the associated posterior moments under easily verifiable conditions.
A model accuracy analysis suggests that the Bayesian probability probabilities reported by the data-driven models are also remarkably accurate under a frequentist definition.
arXiv Detail & Related papers (2021-03-18T11:34:08Z) - Improving Uncertainty Calibration via Prior Augmented Data [56.88185136509654]
Neural networks have proven successful at learning from complex data distributions by acting as universal function approximators.
They are often overconfident in their predictions, which leads to inaccurate and miscalibrated probabilistic predictions.
We propose a solution by seeking out regions of feature space where the model is unjustifiably overconfident, and conditionally raising the entropy of those predictions towards that of the prior distribution of the labels.
arXiv Detail & Related papers (2021-02-22T07:02:37Z) - Transfer Learning for Linear Regression: a Statistical Test of Gain [2.1550839871882017]
Transfer learning aims at reusing knowledge from a source dataset to a similar target one.
It is shown that the quality of transfer for a new input vector $x$ depends on its representation in an eigenbasis.
A statistical test is constructed to predict whether a fine-tuned model has a lower prediction quadratic risk than the base target model.
arXiv Detail & Related papers (2021-02-18T17:46:26Z) - Unlabelled Data Improves Bayesian Uncertainty Calibration under
Covariate Shift [100.52588638477862]
We develop an approximate Bayesian inference scheme based on posterior regularisation.
We demonstrate the utility of our method in the context of transferring prognostic models of prostate cancer across globally diverse populations.
arXiv Detail & Related papers (2020-06-26T13:50:19Z) - A comprehensive study on the prediction reliability of graph neural
networks for virtual screening [0.0]
We investigate the effects of model architectures, regularization methods, and loss functions on the prediction performance and reliability of classification results.
Our result highlights that correct choice of regularization and inference methods is evidently important to achieve high success rate.
arXiv Detail & Related papers (2020-03-17T10:13:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.