Experimental Observations of the Topology of Convolutional Neural
Network Activations
- URL: http://arxiv.org/abs/2212.00222v1
- Date: Thu, 1 Dec 2022 02:05:44 GMT
- Title: Experimental Observations of the Topology of Convolutional Neural
Network Activations
- Authors: Emilie Purvine, Davis Brown, Brett Jefferson, Cliff Joslyn, Brenda
Praggastis, Archit Rathore, Madelyn Shapiro, Bei Wang, Youjia Zhou
- Abstract summary: Topological data analysis provides compact, noise-robust representations of complex structures.
Deep neural networks (DNNs) learn millions of parameters associated with a series of transformations defined by the model architecture.
In this paper, we apply cutting edge techniques from TDA with the goal of gaining insight into the interpretability of convolutional neural networks used for image classification.
- Score: 2.4235626091331737
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Topological data analysis (TDA) is a branch of computational mathematics,
bridging algebraic topology and data science, that provides compact,
noise-robust representations of complex structures. Deep neural networks (DNNs)
learn millions of parameters associated with a series of transformations
defined by the model architecture, resulting in high-dimensional,
difficult-to-interpret internal representations of input data. As DNNs become
more ubiquitous across multiple sectors of our society, there is increasing
recognition that mathematical methods are needed to aid analysts, researchers,
and practitioners in understanding and interpreting how these models' internal
representations relate to the final classification. In this paper, we apply
cutting edge techniques from TDA with the goal of gaining insight into the
interpretability of convolutional neural networks used for image
classification. We use two common TDA approaches to explore several methods for
modeling hidden-layer activations as high-dimensional point clouds, and provide
experimental evidence that these point clouds capture valuable structural
information about the model's process. First, we demonstrate that a distance
metric based on persistent homology can be used to quantify meaningful
differences between layers, and we discuss these distances in the broader
context of existing representational similarity metrics for neural network
interpretability. Second, we show that a mapper graph can provide semantic
insight into how these models organize hierarchical class knowledge at each
layer. These observations demonstrate that TDA is a useful tool to help deep
learning practitioners unlock the hidden structures of their models.
Related papers
- Deep Neural Networks via Complex Network Theory: a Perspective [3.1023851130450684]
Deep Neural Networks (DNNs) can be represented as graphs whose links and vertices iteratively process data and solve tasks sub-optimally. Complex Network Theory (CNT), merging statistical physics with graph theory, provides a method for interpreting neural networks by analysing their weights and neuron structures.
In this work, we extend the existing CNT metrics with measures that sample from the DNNs' training distribution, shifting from a purely topological analysis to one that connects with the interpretability of deep learning.
arXiv Detail & Related papers (2024-04-17T08:42:42Z) - Assessing Neural Network Representations During Training Using
Noise-Resilient Diffusion Spectral Entropy [55.014926694758195]
Entropy and mutual information in neural networks provide rich information on the learning process.
We leverage data geometry to access the underlying manifold and reliably compute these information-theoretic measures.
We show that they form noise-resistant measures of intrinsic dimensionality and relationship strength in high-dimensional simulated data.
arXiv Detail & Related papers (2023-12-04T01:32:42Z) - Deep neural networks architectures from the perspective of manifold
learning [0.0]
This paper is a comprehensive comparison and description of neural network architectures in terms of ge-ometry and topology.
We focus on the internal representation of neural networks and on the dynamics of changes in the topology and geometry of a data manifold on different layers.
arXiv Detail & Related papers (2023-06-06T04:57:39Z) - Do Neural Networks Trained with Topological Features Learn Different
Internal Representations? [1.418465438044804]
We investigate whether a model trained with topological features learns internal representations of data that are fundamentally different than those learned by a model trained with the original raw data.
We find that structurally, the hidden representations of models trained and evaluated on topological features differ substantially compared to those trained and evaluated on the corresponding raw data.
We conjecture that this means that neural networks trained on raw data may extract some limited topological features in the process of making predictions.
arXiv Detail & Related papers (2022-11-14T19:19:04Z) - A Detailed Study of Interpretability of Deep Neural Network based Top
Taggers [3.8541104292281805]
Recent developments in explainable AI (XAI) allow researchers to explore the inner workings of deep neural networks (DNNs)
We explore interpretability of models designed to identify jets coming from top quark decay in high energy proton-proton collisions at the Large Hadron Collider (LHC)
Our studies uncover some major pitfalls of existing XAI methods and illustrate how they can be overcome to obtain consistent and meaningful interpretation of these models.
arXiv Detail & Related papers (2022-10-09T23:02:42Z) - Data-driven emergence of convolutional structure in neural networks [83.4920717252233]
We show how fully-connected neural networks solving a discrimination task can learn a convolutional structure directly from their inputs.
By carefully designing data models, we show that the emergence of this pattern is triggered by the non-Gaussian, higher-order local structure of the inputs.
arXiv Detail & Related papers (2022-02-01T17:11:13Z) - Generalized Shape Metrics on Neural Representations [26.78835065137714]
We provide a family of metric spaces that quantify representational dissimilarity.
We modify existing representational similarity measures based on canonical correlation analysis to satisfy the triangle inequality.
We identify relationships between neural representations that are interpretable in terms of anatomical features and model performance.
arXiv Detail & Related papers (2021-10-27T19:48:55Z) - Dynamic Inference with Neural Interpreters [72.90231306252007]
We present Neural Interpreters, an architecture that factorizes inference in a self-attention network as a system of modules.
inputs to the model are routed through a sequence of functions in a way that is end-to-end learned.
We show that Neural Interpreters perform on par with the vision transformer using fewer parameters, while being transferrable to a new task in a sample efficient manner.
arXiv Detail & Related papers (2021-10-12T23:22:45Z) - Anomaly Detection on Attributed Networks via Contrastive Self-Supervised
Learning [50.24174211654775]
We present a novel contrastive self-supervised learning framework for anomaly detection on attributed networks.
Our framework fully exploits the local information from network data by sampling a novel type of contrastive instance pair.
A graph neural network-based contrastive learning model is proposed to learn informative embedding from high-dimensional attributes and local structure.
arXiv Detail & Related papers (2021-02-27T03:17:20Z) - Inter-layer Information Similarity Assessment of Deep Neural Networks
Via Topological Similarity and Persistence Analysis of Data Neighbour
Dynamics [93.4221402881609]
The quantitative analysis of information structure through a deep neural network (DNN) can unveil new insights into the theoretical performance of DNN architectures.
Inspired by both LS and ID strategies for quantitative information structure analysis, we introduce two novel complimentary methods for inter-layer information similarity assessment.
We demonstrate their efficacy in this study by performing analysis on a deep convolutional neural network architecture on image data.
arXiv Detail & Related papers (2020-12-07T15:34:58Z) - Spatio-Temporal Inception Graph Convolutional Networks for
Skeleton-Based Action Recognition [126.51241919472356]
We design a simple and highly modularized graph convolutional network architecture for skeleton-based action recognition.
Our network is constructed by repeating a building block that aggregates multi-granularity information from both the spatial and temporal paths.
arXiv Detail & Related papers (2020-11-26T14:43:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.