xEM: Explainable Entity Matching in Customer 360
- URL: http://arxiv.org/abs/2212.00342v1
- Date: Thu, 1 Dec 2022 08:01:01 GMT
- Title: xEM: Explainable Entity Matching in Customer 360
- Authors: Sukriti Jaitly, Deepa Mariam George, Balaji Ganesan, Muhammad Ameen,
Srinivas Pusapati
- Abstract summary: We present our Explainable Entity Matching (xEM) system.
In this demo, we discuss the different AI/ML considerations that went into its implementation.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Entity matching in Customer 360 is the task of determining if multiple
records represent the same real world entity. Entities are typically people,
organizations, locations, and events represented as attributed nodes in a
graph, though they can also be represented as records in relational data. While
probabilistic matching engines and artificial neural network models exist for
this task, explaining entity matching has received less attention. In this
demo, we present our Explainable Entity Matching (xEM) system and discuss the
different AI/ML considerations that went into its implementation.
Related papers
- Web-Scale Visual Entity Recognition: An LLM-Driven Data Approach [56.55633052479446]
Web-scale visual entity recognition presents significant challenges due to the lack of clean, large-scale training data.
We propose a novel methodology to curate such a dataset, leveraging a multimodal large language model (LLM) for label verification, metadata generation, and rationale explanation.
Experiments demonstrate that models trained on this automatically curated data achieve state-of-the-art performance on web-scale visual entity recognition tasks.
arXiv Detail & Related papers (2024-10-31T06:55:24Z) - GE-Blender: Graph-Based Knowledge Enhancement for Blender [3.8841367260456487]
Unseen entities can have a large impact on the dialogue generation task.
We construct a graph by extracting entity nodes in them, enhancing the representation of the context.
We add the named entity tag prediction task to apply the problem that the unseen entity does not exist in the graph.
arXiv Detail & Related papers (2023-01-30T13:00:20Z) - EventEA: Benchmarking Entity Alignment for Event-centric Knowledge
Graphs [17.27027602556303]
We show that the progress made in the past was due to biased and unchallenging evaluation.
We construct a new dataset with heterogeneous relations and attributes based on event-centric KGs.
As a new approach to this difficult problem, we propose a time-aware literal encoder for entity alignment.
arXiv Detail & Related papers (2022-11-05T05:34:21Z) - Complex-Valued Autoencoders for Object Discovery [62.26260974933819]
We propose a distributed approach to object-centric representations: the Complex AutoEncoder.
We show that this simple and efficient approach achieves better reconstruction performance than an equivalent real-valued autoencoder on simple multi-object datasets.
We also show that it achieves competitive unsupervised object discovery performance to a SlotAttention model on two datasets, and manages to disentangle objects in a third dataset where SlotAttention fails - all while being 7-70 times faster to train.
arXiv Detail & Related papers (2022-04-05T09:25:28Z) - Parallel Instance Query Network for Named Entity Recognition [73.30174490672647]
Named entity recognition (NER) is a fundamental task in natural language processing.
Recent works treat named entity recognition as a reading comprehension task, constructing type-specific queries manually to extract entities.
We propose Parallel Instance Query Network (PIQN), which sets up global and learnable instance queries to extract entities in a parallel manner.
arXiv Detail & Related papers (2022-03-20T13:01:25Z) - Dynamic Relation Discovery and Utilization in Multi-Entity Time Series
Forecasting [92.32415130188046]
In many real-world scenarios, there could exist crucial yet implicit relation between entities.
We propose an attentional multi-graph neural network with automatic graph learning (A2GNN) in this work.
arXiv Detail & Related papers (2022-02-18T11:37:04Z) - EchoEA: Echo Information between Entities and Relations for Entity
Alignment [1.1470070927586016]
We propose a novel framework, Echo Entity Alignment (EchoEA), which leverages self-attention mechanism to spread entity information to relations and echo back to entities.
The experimental results on three real-world cross-lingual datasets are stable at around 96% at hits@1 on average.
arXiv Detail & Related papers (2021-07-07T07:34:21Z) - Interpretable and Low-Resource Entity Matching via Decoupling Feature
Learning from Decision Making [22.755892575582788]
Entity Matching aims at recognizing entity records that denote the same real-world object.
We propose a novel EM framework that consists of Heterogeneous Information Fusion (HIF) and Key Attribute Tree (KAT) Induction.
Our method is highly efficient and outperforms SOTA EM models in most cases.
arXiv Detail & Related papers (2021-06-08T08:27:31Z) - Autoregressive Entity Retrieval [55.38027440347138]
Entities are at the center of how we represent and aggregate knowledge.
The ability to retrieve such entities given a query is fundamental for knowledge-intensive tasks such as entity linking and open-domain question answering.
We propose GENRE, the first system that retrieves entities by generating their unique names, left to right, token-by-token in an autoregressive fashion.
arXiv Detail & Related papers (2020-10-02T10:13:31Z) - Improving Coreference Resolution by Leveraging Entity-Centric Features
with Graph Neural Networks and Second-order Inference [12.115691569576345]
Coreferent mentions usually spread far apart in an entire text, making it difficult to incorporate entity-level features.
We propose a graph neural network-based coreference resolution method that can capture the entity-centric information.
A global inference algorithm up to second-order features is also presented to optimally cluster mentions into consistent groups.
arXiv Detail & Related papers (2020-09-10T02:22:21Z) - ConsNet: Learning Consistency Graph for Zero-Shot Human-Object
Interaction Detection [101.56529337489417]
We consider the problem of Human-Object Interaction (HOI) Detection, which aims to locate and recognize HOI instances in the form of human, action, object> in images.
We argue that multi-level consistencies among objects, actions and interactions are strong cues for generating semantic representations of rare or previously unseen HOIs.
Our model takes visual features of candidate human-object pairs and word embeddings of HOI labels as inputs, maps them into visual-semantic joint embedding space and obtains detection results by measuring their similarities.
arXiv Detail & Related papers (2020-08-14T09:11:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.