Launchpad: Learning to Schedule Using Offline and Online RL Methods
- URL: http://arxiv.org/abs/2212.00639v2
- Date: Fri, 2 Dec 2022 14:43:48 GMT
- Title: Launchpad: Learning to Schedule Using Offline and Online RL Methods
- Authors: Vanamala Venkataswamy, Jake Grigsby, Andrew Grimshaw, Yanjun Qi
- Abstract summary: Existing RL schedulers overlook the importance of learning from historical data and improving upon custom policies.
offline reinforcement learning presents the prospect of policy optimization from pre-recorded datasets without online environment interaction.
These methods address the challenges concerning the cost of data collection and safety, particularly pertinent to real-world applications of RL.
- Score: 9.488752723308954
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Deep reinforcement learning algorithms have succeeded in several challenging
domains. Classic Online RL job schedulers can learn efficient scheduling
strategies but often takes thousands of timesteps to explore the environment
and adapt from a randomly initialized DNN policy. Existing RL schedulers
overlook the importance of learning from historical data and improving upon
custom heuristic policies. Offline reinforcement learning presents the prospect
of policy optimization from pre-recorded datasets without online environment
interaction. Following the recent success of data-driven learning, we explore
two RL methods: 1) Behaviour Cloning and 2) Offline RL, which aim to learn
policies from logged data without interacting with the environment. These
methods address the challenges concerning the cost of data collection and
safety, particularly pertinent to real-world applications of RL. Although the
data-driven RL methods generate good results, we show that the performance is
highly dependent on the quality of the historical datasets. Finally, we
demonstrate that by effectively incorporating prior expert demonstrations to
pre-train the agent, we short-circuit the random exploration phase to learn a
reasonable policy with online training. We utilize Offline RL as a launchpad to
learn effective scheduling policies from prior experience collected using
Oracle or heuristic policies. Such a framework is effective for pre-training
from historical datasets and well suited to continuous improvement with online
data collection.
Related papers
- D5RL: Diverse Datasets for Data-Driven Deep Reinforcement Learning [99.33607114541861]
We propose a new benchmark for offline RL that focuses on realistic simulations of robotic manipulation and locomotion environments.
Our proposed benchmark covers state-based and image-based domains, and supports both offline RL and online fine-tuning evaluation.
arXiv Detail & Related papers (2024-08-15T22:27:00Z) - Offline Reinforcement Learning from Datasets with Structured Non-Stationarity [50.35634234137108]
Current Reinforcement Learning (RL) is often limited by the large amount of data needed to learn a successful policy.
We address a novel Offline RL problem setting in which, while collecting the dataset, the transition and reward functions gradually change between episodes but stay constant within each episode.
We propose a method based on Contrastive Predictive Coding that identifies this non-stationarity in the offline dataset, accounts for it when training a policy, and predicts it during evaluation.
arXiv Detail & Related papers (2024-05-23T02:41:36Z) - Using Offline Data to Speed-up Reinforcement Learning in Procedurally
Generated Environments [11.272582555795989]
We study whether agents can leverage offline data in the form of trajectories to improve the sample-efficiency in procedurally generated environments.
We consider two settings of using IL from offline data for RL: (1) pre-training a policy before online RL training and (2) concurrently training a policy with online RL and IL from offline data.
arXiv Detail & Related papers (2023-04-18T16:23:15Z) - Adaptive Policy Learning for Offline-to-Online Reinforcement Learning [27.80266207283246]
We consider an offline-to-online setting where the agent is first learned from the offline dataset and then trained online.
We propose a framework called Adaptive Policy Learning for effectively taking advantage of offline and online data.
arXiv Detail & Related papers (2023-03-14T08:13:21Z) - Benchmarks and Algorithms for Offline Preference-Based Reward Learning [41.676208473752425]
We propose an approach that uses an offline dataset to craft preference queries via pool-based active learning.
Our proposed approach does not require actual physical rollouts or an accurate simulator for either the reward learning or policy optimization steps.
arXiv Detail & Related papers (2023-01-03T23:52:16Z) - Jump-Start Reinforcement Learning [68.82380421479675]
We present a meta algorithm that can use offline data, demonstrations, or a pre-existing policy to initialize an RL policy.
In particular, we propose Jump-Start Reinforcement Learning (JSRL), an algorithm that employs two policies to solve tasks.
We show via experiments that JSRL is able to significantly outperform existing imitation and reinforcement learning algorithms.
arXiv Detail & Related papers (2022-04-05T17:25:22Z) - Representation Matters: Offline Pretraining for Sequential Decision
Making [27.74988221252854]
In this paper, we consider a slightly different approach to incorporating offline data into sequential decision-making.
We find that the use of pretraining with unsupervised learning objectives can dramatically improve the performance of policy learning algorithms.
arXiv Detail & Related papers (2021-02-11T02:38:12Z) - Critic Regularized Regression [70.8487887738354]
We propose a novel offline RL algorithm to learn policies from data using a form of critic-regularized regression (CRR)
We find that CRR performs surprisingly well and scales to tasks with high-dimensional state and action spaces.
arXiv Detail & Related papers (2020-06-26T17:50:26Z) - AWAC: Accelerating Online Reinforcement Learning with Offline Datasets [84.94748183816547]
We show that our method, advantage weighted actor critic (AWAC), enables rapid learning of skills with a combination of prior demonstration data and online experience.
Our results show that incorporating prior data can reduce the time required to learn a range of robotic skills to practical time-scales.
arXiv Detail & Related papers (2020-06-16T17:54:41Z) - D4RL: Datasets for Deep Data-Driven Reinforcement Learning [119.49182500071288]
We introduce benchmarks specifically designed for the offline setting, guided by key properties of datasets relevant to real-world applications of offline RL.
By moving beyond simple benchmark tasks and data collected by partially-trained RL agents, we reveal important and unappreciated deficiencies of existing algorithms.
arXiv Detail & Related papers (2020-04-15T17:18:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.