A Hybrid Deep Learning Anomaly Detection Framework for Intrusion
Detection
- URL: http://arxiv.org/abs/2212.00966v1
- Date: Fri, 2 Dec 2022 04:40:54 GMT
- Title: A Hybrid Deep Learning Anomaly Detection Framework for Intrusion
Detection
- Authors: Rahul Kale, Zhi Lu, Kar Wai Fok, Vrizlynn L. L. Thing
- Abstract summary: We propose a three-stage deep learning anomaly detection based network intrusion attack detection framework.
The framework comprises an integration of unsupervised (K-means clustering), semi-supervised (GANomaly) and supervised learning (CNN) algorithms.
We then evaluated and showed the performance of our implemented framework on three benchmark datasets.
- Score: 4.718295605140562
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Cyber intrusion attacks that compromise the users' critical and sensitive
data are escalating in volume and intensity, especially with the growing
connections between our daily life and the Internet. The large volume and high
complexity of such intrusion attacks have impeded the effectiveness of most
traditional defence techniques. While at the same time, the remarkable
performance of the machine learning methods, especially deep learning, in
computer vision, had garnered research interests from the cyber security
community to further enhance and automate intrusion detections. However, the
expensive data labeling and limitation of anomalous data make it challenging to
train an intrusion detector in a fully supervised manner. Therefore, intrusion
detection based on unsupervised anomaly detection is an important feature too.
In this paper, we propose a three-stage deep learning anomaly detection based
network intrusion attack detection framework. The framework comprises an
integration of unsupervised (K-means clustering), semi-supervised (GANomaly)
and supervised learning (CNN) algorithms. We then evaluated and showed the
performance of our implemented framework on three benchmark datasets: NSL-KDD,
CIC-IDS2018, and TON_IoT.
Related papers
- Federated Learning for Zero-Day Attack Detection in 5G and Beyond V2X Networks [9.86830550255822]
Connected and Automated Vehicles (CAVs) on top of 5G and Beyond networks (5GB) make them vulnerable to increasing vectors of security and privacy attacks.
We propose in this paper a novel detection mechanism that leverages the ability of the deep auto-encoder method to detect attacks relying only on the benign network traffic pattern.
Using federated learning, the proposed intrusion detection system can be trained with large and diverse benign network traffic, while preserving the CAVs privacy, and minimizing the communication overhead.
arXiv Detail & Related papers (2024-07-03T12:42:31Z) - Deep Learning Algorithms Used in Intrusion Detection Systems -- A Review [0.0]
This review paper studies recent advancements in the application of deep learning techniques, including CNN, Recurrent Neural Networks (RNN), Deep Belief Networks (DBN), Deep Neural Networks (DNN), Long Short-Term Memory (LSTM), autoencoders (AE), Multi-Layer Perceptrons (MLP), Self-Normalizing Networks (SNN) and hybrid models, within network intrusion detection systems.
arXiv Detail & Related papers (2024-02-26T20:57:35Z) - A near-autonomous and incremental intrusion detection system through active learning of known and unknown attacks [2.686686221415684]
Intrusion detection is a traditional practice of security experts, however, there are several issues which still need to be tackled.
We present an architecture for a hybrid Intrusion Detection System (IDS) for an adaptive and incremental detection of both known and unknown attacks.
arXiv Detail & Related papers (2023-10-26T14:37:54Z) - Few-shot Weakly-supervised Cybersecurity Anomaly Detection [1.179179628317559]
We propose an enhancement to an existing few-shot weakly-supervised deep learning anomaly detection framework.
This framework incorporates data augmentation, representation learning and ordinal regression.
We then evaluated and showed the performance of our implemented framework on three benchmark datasets.
arXiv Detail & Related papers (2023-04-15T04:37:54Z) - A Comprehensive Study of the Robustness for LiDAR-based 3D Object
Detectors against Adversarial Attacks [84.10546708708554]
3D object detectors are increasingly crucial for security-critical tasks.
It is imperative to understand their robustness against adversarial attacks.
This paper presents the first comprehensive evaluation and analysis of the robustness of LiDAR-based 3D detectors under adversarial attacks.
arXiv Detail & Related papers (2022-12-20T13:09:58Z) - Learning to Detect: A Data-driven Approach for Network Intrusion
Detection [17.288512506016612]
We perform a comprehensive study on NSL-KDD, a network traffic dataset, by visualizing patterns and employing different learning-based models to detect cyber attacks.
Unlike previous shallow learning and deep learning models that use the single learning model approach for intrusion detection, we adopt a hierarchy strategy.
We demonstrate the advantage of the unsupervised representation learning model in binary intrusion detection tasks.
arXiv Detail & Related papers (2021-08-18T21:19:26Z) - Bayesian Optimization with Machine Learning Algorithms Towards Anomaly
Detection [66.05992706105224]
In this paper, an effective anomaly detection framework is proposed utilizing Bayesian Optimization technique.
The performance of the considered algorithms is evaluated using the ISCX 2012 dataset.
Experimental results show the effectiveness of the proposed framework in term of accuracy rate, precision, low-false alarm rate, and recall.
arXiv Detail & Related papers (2020-08-05T19:29:35Z) - Security of Distributed Machine Learning: A Game-Theoretic Approach to
Design Secure DSVM [31.480769801354413]
This work aims to develop secure distributed algorithms to protect the learning from data poisoning and network attacks.
We establish a game-theoretic framework to capture the conflicting goals of a learner who uses distributed support vector machines (SVMs) and an attacker who is capable of modifying training data and labels.
The numerical results show that distributed SVM is prone to fail in different types of attacks, and their impact has a strong dependence on the network structure and attack capabilities.
arXiv Detail & Related papers (2020-03-08T18:54:17Z) - Survey of Network Intrusion Detection Methods from the Perspective of
the Knowledge Discovery in Databases Process [63.75363908696257]
We review the methods that have been applied to network data with the purpose of developing an intrusion detector.
We discuss the techniques used for the capture, preparation and transformation of the data, as well as, the data mining and evaluation methods.
As a result of this literature review, we investigate some open issues which will need to be considered for further research in the area of network security.
arXiv Detail & Related papers (2020-01-27T11:21:05Z) - Adversarial vs behavioural-based defensive AI with joint, continual and
active learning: automated evaluation of robustness to deception, poisoning
and concept drift [62.997667081978825]
Recent advancements in Artificial Intelligence (AI) have brought new capabilities to behavioural analysis (UEBA) for cyber-security.
In this paper, we present a solution to effectively mitigate this attack by improving the detection process and efficiently leveraging human expertise.
arXiv Detail & Related papers (2020-01-13T13:54:36Z) - Adaptive Anomaly Detection for IoT Data in Hierarchical Edge Computing [71.86955275376604]
We propose an adaptive anomaly detection approach for hierarchical edge computing (HEC) systems to solve this problem.
We design an adaptive scheme to select one of the models based on the contextual information extracted from input data, to perform anomaly detection.
We evaluate our proposed approach using a real IoT dataset, and demonstrate that it reduces detection delay by 84% while maintaining almost the same accuracy as compared to offloading detection tasks to the cloud.
arXiv Detail & Related papers (2020-01-10T05:29:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.