On Solution Functions of Optimization: Universal Approximation and
Covering Number Bounds
- URL: http://arxiv.org/abs/2212.01314v1
- Date: Fri, 2 Dec 2022 17:16:04 GMT
- Title: On Solution Functions of Optimization: Universal Approximation and
Covering Number Bounds
- Authors: Ming Jin, Vanshaj Khattar, Harshal Kaushik, Bilgehan Sel, and Ruoxi
Jia
- Abstract summary: We study the expressability of convex optimization functions solution functions of linear targetibility(1) (LP) and approximable approximation power of QP.
Our results provide the emph we model for rigorous analysis of the properties of some restricted programming and implications for algorithmic design and performance guarantees.
- Score: 6.3291148076593355
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We study the expressibility and learnability of convex optimization solution
functions and their multi-layer architectural extension. The main results are:
\emph{(1)} the class of solution functions of linear programming (LP) and
quadratic programming (QP) is a universal approximant for the $C^k$ smooth
model class or some restricted Sobolev space, and we characterize the
rate-distortion, \emph{(2)} the approximation power is investigated through a
viewpoint of regression error, where information about the target function is
provided in terms of data observations, \emph{(3)} compositionality in the form
of a deep architecture with optimization as a layer is shown to reconstruct
some basic functions used in numerical analysis without error, which implies
that \emph{(4)} a substantial reduction in rate-distortion can be achieved with
a universal network architecture, and \emph{(5)} we discuss the statistical
bounds of empirical covering numbers for LP/QP, as well as a generic
optimization problem (possibly nonconvex) by exploiting tame geometry. Our
results provide the \emph{first rigorous analysis of the approximation and
learning-theoretic properties of solution functions} with implications for
algorithmic design and performance guarantees.
Related papers
- BO4IO: A Bayesian optimization approach to inverse optimization with uncertainty quantification [5.031974232392534]
This work addresses data-driven inverse optimization (IO)
The goal is to estimate unknown parameters in an optimization model from observed decisions that can be assumed to be optimal or near-optimal.
arXiv Detail & Related papers (2024-05-28T06:52:17Z) - A Mean-Field Analysis of Neural Stochastic Gradient Descent-Ascent for Functional Minimax Optimization [90.87444114491116]
This paper studies minimax optimization problems defined over infinite-dimensional function classes of overparametricized two-layer neural networks.
We address (i) the convergence of the gradient descent-ascent algorithm and (ii) the representation learning of the neural networks.
Results show that the feature representation induced by the neural networks is allowed to deviate from the initial one by the magnitude of $O(alpha-1)$, measured in terms of the Wasserstein distance.
arXiv Detail & Related papers (2024-04-18T16:46:08Z) - Learning Unnormalized Statistical Models via Compositional Optimization [73.30514599338407]
Noise-contrastive estimation(NCE) has been proposed by formulating the objective as the logistic loss of the real data and the artificial noise.
In this paper, we study it a direct approach for optimizing the negative log-likelihood of unnormalized models.
arXiv Detail & Related papers (2023-06-13T01:18:16Z) - Optimal Sets and Solution Paths of ReLU Networks [56.40911684005949]
We develop an analytical framework to characterize the set of optimal ReLU networks.
We establish conditions for the neuralization of ReLU networks to be continuous, and develop sensitivity results for ReLU networks.
arXiv Detail & Related papers (2023-05-31T18:48:16Z) - FAStEN: An Efficient Adaptive Method for Feature Selection and Estimation in High-Dimensional Functional Regressions [7.674715791336311]
We propose a new, flexible and ultra-efficient approach to perform feature selection in a sparse function-on-function regression problem.
We show how to extend it to the scalar-on-function framework.
We present an application to brain fMRI data from the AOMIC PIOP1 study.
arXiv Detail & Related papers (2023-03-26T19:41:17Z) - Offline Reinforcement Learning with Differentiable Function
Approximation is Provably Efficient [65.08966446962845]
offline reinforcement learning, which aims at optimizing decision-making strategies with historical data, has been extensively applied in real-life applications.
We take a step by considering offline reinforcement learning with differentiable function class approximation (DFA)
Most importantly, we show offline differentiable function approximation is provably efficient by analyzing the pessimistic fitted Q-learning algorithm.
arXiv Detail & Related papers (2022-10-03T07:59:42Z) - Zeroth-Order Hybrid Gradient Descent: Towards A Principled Black-Box
Optimization Framework [100.36569795440889]
This work is on the iteration of zero-th-order (ZO) optimization which does not require first-order information.
We show that with a graceful design in coordinate importance sampling, the proposed ZO optimization method is efficient both in terms of complexity as well as as function query cost.
arXiv Detail & Related papers (2020-12-21T17:29:58Z) - Sparse Signal Reconstruction for Nonlinear Models via Piecewise Rational
Optimization [27.080837460030583]
We propose a method to reconstruct degraded signals by a nonlinear distortion and at a limited sampling rate.
Our method formulates as a non exact fitting term and a penalization term.
It is shown how to use the problem in terms of the benefits of our simulations.
arXiv Detail & Related papers (2020-10-29T09:05:19Z) - Ideal formulations for constrained convex optimization problems with
indicator variables [2.578242050187029]
We study the convexification of a class of convex optimization problems with indicator variables and constraints on the indicators.
Unlike most of the previous work on convexification of sparse regression problems, we simultaneously consider the nonlinear non-separable objective, indicator variables, and constraints.
We derive ideal convexifications for problems with hierarchy, multi-collinearity, and sparsity constraints.
arXiv Detail & Related papers (2020-06-30T21:07:10Z) - Objective-Sensitive Principal Component Analysis for High-Dimensional
Inverse Problems [0.0]
We present a novel approach for adaptive, differentiable parameterization of large-scale random fields.
The developed technique is based on principal component analysis (PCA) but modifies a purely data-driven basis of principal components considering objective function behavior.
Three algorithms for optimal parameter decomposition are presented and applied to an objective of 2D synthetic history matching.
arXiv Detail & Related papers (2020-06-02T18:51:17Z) - Convex Geometry and Duality of Over-parameterized Neural Networks [70.15611146583068]
We develop a convex analytic approach to analyze finite width two-layer ReLU networks.
We show that an optimal solution to the regularized training problem can be characterized as extreme points of a convex set.
In higher dimensions, we show that the training problem can be cast as a finite dimensional convex problem with infinitely many constraints.
arXiv Detail & Related papers (2020-02-25T23:05:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.