Addressing Distribution Shift at Test Time in Pre-trained Language
Models
- URL: http://arxiv.org/abs/2212.02384v1
- Date: Mon, 5 Dec 2022 16:04:54 GMT
- Title: Addressing Distribution Shift at Test Time in Pre-trained Language
Models
- Authors: Ayush Singh, John E. Ortega
- Abstract summary: State-of-the-art pre-trained language models (PLMs) outperform other models when applied to the majority of language processing tasks.
PLMs have been found to degrade in performance under distribution shift.
We present an approach that improves the performance of PLMs at test-time under distribution shift.
- Score: 3.655021726150369
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: State-of-the-art pre-trained language models (PLMs) outperform other models
when applied to the majority of language processing tasks. However, PLMs have
been found to degrade in performance under distribution shift, a phenomenon
that occurs when data at test-time does not come from the same distribution as
the source training set. Equally as challenging is the task of obtaining labels
in real-time due to issues like long-labeling feedback loops. The lack of
adequate methods that address the aforementioned challenges constitutes the
need for approaches that continuously adapt the PLM to a distinct distribution.
Unsupervised domain adaptation adapts a source model to an unseen as well as
unlabeled target domain. While some techniques such as data augmentation can
adapt models in several scenarios, they have only been sparsely studied for
addressing the distribution shift problem. In this work, we present an approach
(MEMO-CL) that improves the performance of PLMs at test-time under distribution
shift. Our approach takes advantage of the latest unsupervised techniques in
data augmentation and adaptation to minimize the entropy of the PLM's output
distribution. MEMO-CL operates on a batch of augmented samples from a single
observation in the test set. The technique introduced is unsupervised,
domain-agnostic, easy to implement, and requires no additional data. Our
experiments result in a 3% improvement over current test-time adaptation
baselines.
Related papers
- Meta-TTT: A Meta-learning Minimax Framework For Test-Time Training [5.9631503543049895]
Test-time domain adaptation is a challenging task that aims to adapt a pre-trained model to limited, unlabeled target data during inference.
This paper introduces a meta-learning minimax framework for test-time training on batch normalization layers.
arXiv Detail & Related papers (2024-10-02T16:16:05Z) - DOTA: Distributional Test-Time Adaptation of Vision-Language Models [52.98590762456236]
Training-free test-time dynamic adapter (TDA) is a promising approach to address this issue.
We propose a simple yet effective method for DistributiOnal Test-time Adaptation (Dota)
Dota continually estimates the distributions of test samples, allowing the model to continually adapt to the deployment environment.
arXiv Detail & Related papers (2024-09-28T15:03:28Z) - Test-Time Model Adaptation with Only Forward Passes [68.11784295706995]
Test-time adaptation has proven effective in adapting a given trained model to unseen test samples with potential distribution shifts.
We propose a test-time Forward-Optimization Adaptation (FOA) method.
FOA runs on quantized 8-bit ViT, outperforms gradient-based TENT on full-precision 32-bit ViT, and achieves an up to 24-fold memory reduction on ImageNet-C.
arXiv Detail & Related papers (2024-04-02T05:34:33Z) - Adaptive Test-Time Personalization for Federated Learning [51.25437606915392]
We introduce a novel setting called test-time personalized federated learning (TTPFL)
In TTPFL, clients locally adapt a global model in an unsupervised way without relying on any labeled data during test-time.
We propose a novel algorithm called ATP to adaptively learn the adaptation rates for each module in the model from distribution shifts among source domains.
arXiv Detail & Related papers (2023-10-28T20:42:47Z) - Robustness, Evaluation and Adaptation of Machine Learning Models in the
Wild [4.304803366354879]
We study causes of impaired robustness to domain shifts and present algorithms for training domain robust models.
A key source of model brittleness is due to domain overfitting, which our new training algorithms suppress and instead encourage domain-general hypotheses.
arXiv Detail & Related papers (2023-03-05T21:41:16Z) - Learning to Adapt to Online Streams with Distribution Shifts [22.155844301575883]
Test-time adaptation (TTA) is a technique used to reduce distribution gaps between the training and testing sets by leveraging unlabeled test data during inference.
In this work, we expand TTA to a more practical scenario, where the test data comes in the form of online streams that experience distribution shifts over time.
We propose a meta-learning approach that teaches the network to adapt to distribution-shifting online streams during meta-training. As a result, the trained model can perform continual adaptation to distribution shifts in testing, regardless of the batch size restriction.
arXiv Detail & Related papers (2023-03-02T23:36:10Z) - TeST: Test-time Self-Training under Distribution Shift [99.68465267994783]
Test-Time Self-Training (TeST) is a technique that takes as input a model trained on some source data and a novel data distribution at test time.
We find that models adapted using TeST significantly improve over baseline test-time adaptation algorithms.
arXiv Detail & Related papers (2022-09-23T07:47:33Z) - CAFA: Class-Aware Feature Alignment for Test-Time Adaptation [50.26963784271912]
Test-time adaptation (TTA) aims to address this challenge by adapting a model to unlabeled data at test time.
We propose a simple yet effective feature alignment loss, termed as Class-Aware Feature Alignment (CAFA), which simultaneously encourages a model to learn target representations in a class-discriminative manner.
arXiv Detail & Related papers (2022-06-01T03:02:07Z) - Few-Shot Adaptation of Pre-Trained Networks for Domain Shift [17.123505029637055]
Deep networks are prone to performance degradation when there is a domain shift between the source (training) data and target (test) data.
Recent test-time adaptation methods update batch normalization layers of pre-trained source models deployed in new target environments with streaming data to mitigate such performance degradation.
We propose a framework for few-shot domain adaptation to address the practical challenges of data-efficient adaptation.
arXiv Detail & Related papers (2022-05-30T16:49:59Z) - Adaptive Risk Minimization: Learning to Adapt to Domain Shift [109.87561509436016]
A fundamental assumption of most machine learning algorithms is that the training and test data are drawn from the same underlying distribution.
In this work, we consider the problem setting of domain generalization, where the training data are structured into domains and there may be multiple test time shifts.
We introduce the framework of adaptive risk minimization (ARM), in which models are directly optimized for effective adaptation to shift by learning to adapt on the training domains.
arXiv Detail & Related papers (2020-07-06T17:59:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.